1

- 6 7 8 9
- 10 11 12
- 13 14 15

Α.

- Q. (Reference Application, 4.1 Mount Carmel Pond Dam Refurbishment, Appendix A) With respect to the economic analysis:
 - a) Please reconcile the total annual capital costs given in Attachment A: Summary of Capital Costs with the capital costs given in Attachment D: Calculation of Levelized Costs and Benefits, Table D-2.
 - b) Please provide a revised Table A-3 giving levelized values based on 20 years
 - c) To allow for uncertainty please provide revised Tables A-3 and A-4 (Appendix A, page 7) based on a 9% discount rate (i.e., use a discount rate composed of the 6.65% weighted cost of incremental capital plus 2.35% for uncertainty).
 - a) Table 1 provides the reconciliation of total annual capital costs in Attachment A: Summary of Capital Costs with Attachment D: Calculation of Levelized Cost and Benefits, Table D-2.

Table 1: Reconciliation of Total Annual Capital Costs	
	Amount (\$000s)
Attachment A: Summary of Capital Costs	30,316
Forecast Inflationary Increases (2030 – 2070) ¹	<u>11,897</u>
Attachment D: Calculation of Levelized Costs and Benefits	42,213

Newfoundland Power Inc. - NP 2025 Capital Budget Application

¹ Based on GDP deflators for Canada provided in the Conference Board of Canada's long term forecast dated December 18, 2023.

5

b) Table 2 provides the results of a revised lifecycle analysis of the Cape Broyle-Horse Chops ("CBHC") Hydroelectric Development using levelized values based on 20 years.

Table 2: Lifecycle Analysis Results			
	20 Year Levelized Value	Net benefit	
Lifecycle Cost of the Development	2.58 ¢/kWh		
Cost of Replacement Production (Run-of-River)			
Energy Costs	3.66 ¢/kWh		
Capacity Costs	5.18 ¢/kWh		
Total	8.84 ¢/kWh	6.26 ¢/kWh	
Cost of Replacement Production (Fully Dispatchable)			
Energy Cost	3.66 ¢/kWh		
Capacity Cost	5.32 ¢/kWh		
Total	8.98 ¢/kWh	6.40 ¢/kWh	

Using levelized values based on 20 years, the cost to replace CBHC Development's production will exceed the CBHC Development's cost by between 6.26 ϕ kWh and 6.40 ϕ kWh.

4

5

c) Table 3 provides the results of a revised lifecycle analysis of the CBHC Hydroelectric Development based on a 9% discount rate.

Table 3: Lifecycle Analysis Results				
	50 Year Levelized Value	Net benefit		
Lifecycle Cost of the Development	2.96 ¢/kWh			
Cost of Replacement Production (Run-of-River)				
Energy Costs	3.87 ¢/kWh			
Capacity Costs	5.52 ¢/kWh			
Total	9.39 ¢/kWh	6.43 ¢/kWh		
Cost of Replacement Production (Fully Dispatchable)				
Energy Cost	3.87 ¢/kWh			
Capacity Cost	5.67 ¢/kWh			
Total	9.54 ¢/kWh	6.58 ¢/kWh		

Using levelized values based on 50 years and using a 9.0% discount rate, the cost to replace CBHC Development's production will exceed the CBHC Development's cost by between 6.43 ϕ kWh and 6.58 ϕ kWh.

Table 4 provides a revised present value sensitivity analysis based on a 9% discount rate.

Table 4: Present Value Sensitivity Analysis Results (\$2025)						
	Cost of	Cost of Replacement Production				
Scenario	Cost of Continued Operation (\$M)	Run-of-River (\$M)	Fully Dispatchable (\$M)	Net Savings (\$M)		
Base Case ²	26.5	84.1	85.4	57.6 – 58.9		
Scenario 1A	19.3	56.9	57.8	37.6 – 38.5		
Scenario 1B	26.5	80.1	81.3	53.6 – 54.8		
Scenario 1C	26.5	82.5	83.8	56.0 – 57.4		
Scenario 2	26.5	71.7	72.7	45.2 – 46.2		
Scenario 3	26.5	75.4	76.7	48.9 – 50.2		

The revised sensitivity analysis shows that the cost of continuing to operate the CBHC Development will provide an economic benefit under all scenarios.

_

The base case provides the results of the levelized costs provided in Table 3 expressed as present value of costs as opposed to the levelized cost per kWh.