- 1Q.(2021 Electrification, Conservation and Demand Management Application, Volume21, page 10) It is stated (lines 7 8) "Customers are also forecast to achieve a peak3demand reduction of approximately 70 MW over this period." Please provide this4calculation along with all assumptions.5
- A. Table 1 provides the calculation and assumptions used to forecast the 2025 peak demand
 reduction of approximately 70 MW.¹

Table 1: Peak Demand Reduction 2025 Forecast (MW)

Program	Participants		Per Participant Demand	Demand Reduction
	(A	$)^{2}$	Reduction (kW) (B) ³	(\mathbf{MW}) $(\mathbf{C})^4$
Insulation	27,463	Projects	0.9982	27.4
Thermostats	182,166	Units	0.02387	4.3
Instant Rebates	3,904,430	Units	0.00455	17.8
HRV	5,271	Units	0.1681	0.9
Benchmarking	60,000	Customers	0.0283	1.7
Low Income Kit	20,000	Customers	0.1616	3.2
Business Efficiency	255,329	Units	0.0569	14.5
Total				69.8

¹ Demand reductions are cumulative as the demand reductions achieved from an upgrade in one year are realized in subsequent years until the life of the technology has expired. For example, insulation projects have an expected life of 25 years.

² Participants are listed in terms of projects, units or customers based on the type of program. Per participant demand reduction amounts can vary year to year depending on the mix of technologies rebated in each year for each program. For example, the mix of forecast electronic and programmable thermostats rebated results in different peak demand savings.

³ The effective useful life of the technology and deemed value of demand reductions are determined through market studies such as the 2020-2034 Potential Study and external program evaluations.

⁴ Annual demand reductions (C) are forecast by multiplying the number of participants in a program (A) by the deemed value of demand reduction for that energy efficient upgrade (B). Demand savings are realized annually for the life of the technology.