Page 1 of 1

1	Q.	Please provide ta	bles or lists stating Newfoundland Power's Transmission and
2		Distribution cond	luctor ratings and explain the bases for those ratings.
3			-
4	A.	Attachments A thi	rough E provide conductor current ratings for the various types of
5		distribution prima	ry and transmission conductors used by Newfoundland Power. Below
6		is a list of the attac	chments for each type of conductor.
7			
8		Attachment A:	Distribution Aerial Conductor Ratings
9			
10		Attachment B:	Distribution Underground Cable Ratings
11			
12		Attachment C:	Distribution Aerial Cable Ratings
13			
14		Attachment D:	Transmission Aerial Conductor Ratings
15			
16		Attachment E	Transmission Underground Cable Ratings

PUB-NP-146 Attachment A Supply Issues and Power Outages on the Island Interconnected System

Requests for Information

Newfoundland Power Distribution Aerial Conductor Ratings Table 1 shows the continuous and planning ampacities of various aerial conductors used by NP.

Table 1 Distribution Conductor Ratings							
Size and Type	Continuous Winter Rating ¹	Continuous Summer Rating ²	$CLPU Factor^4 = 2.0$				
13,00	Amps	Amps	Amps	Amps MVA			
	11111	-	i i i i i	4.16 kV	12.5 kV	25.0 kV	
1/0 AASC	303	249	228	1.6	4.9	9.8	
4/0 AASC	474	390	356	2.6	7.7	15.4	
477 ASC	785	646	590	4.2	12.7	25.5	
#2 ACSR	224	184	168	1.2	3.6	7.3	
2/0 ACSR	353	290	265	1.9	5.7	11.4	
266 ACSR	551	454	414 3.0 8.9 17.9				
397 ACSR	712	587	535	3.9	11.6	23.1	
#4 Copper	203	166	153 1.1 3.3 6.6				
1/0 Copper	376	309	283	2.0	6.1	12.2	
2/0 Copper	437	359	329	2.4	7.1	14.2	

Notes:

1. The Continuous Winter Rating is the normal maximum allowable amperage on an aerial conductor during winter. This ampacity is based on the following ambient conditions:

75°C conductor temperature 0°C ambient air temperature 2 ft/s wind speed 100% load factor 9" minimum separation phase to neutral

This rating can be exceeded during abnormal system conditions when the ambient air temperature and wind speed allow for higher loading.

2. The Continuous Summer Rating is the normal maximum allowable amperage on an aerial conductor during summer. This ampacity is based on the following ambient conditions:

75°C conductor temperature 25°C ambient air temperature 2 ft/s wind speed 100% load factor 9" minimum separation phase to neutral This rating can be exceeded during abnormal system conditions when the ambient air temperature and wind speed allow for higher loading.

3. Winter Planning Ratings is the maximum amperage allowed, for planning purposes, under normal operating conditions. Where appropriate, the planning rating may deviate from that shown in Table 1 to address specific circumstances such as: (i) the age and physical condition of the conductor, (ii) the number of customers on the feeder, (iii) the ability to transfer load to adjacent feeders and (iv) operational considerations including the geographic layout and the distribution of customers on the feeder.

The Planning Rating is determined by the following equation:

The Summer Planning Rating is equal to the Continuous Summer Rating.

- 4. CLPU Factor is multiplied by the forecast winter peak demand requirements, under normal operating conditions, to estimate the load which will occur when power is restored to customers.
- 5. The Sectionalizing Factor is based on a single sectionalizing device located on the distribution line, just beyond 2/3 of the customer load from the substation. When restoring power after an outage, it is assumed the sectionalizing device will be opened to reduce the maximum CLPU placed on the conductor. Instead of the restoration load being 2 times the forecast winter peak demand, the restoration load is now limited to 1.33 times the forecast winter peak demand (1.33 is the Sectionalizing Factor). The following equation is used to calculate the sectionalizing factor:

Sectionalizing Factor = CLPU factor x portion of distribution load restored. = 2.0 x 2/3 = 1.33

PUB-NP-146 Attachment B Supply Issues and Power Outages on the Island Interconnected System

Requests for Information

Newfoundland Power Distribution Underground Cable Ratings Table 1 and Table 2 provide the planning ampacity ratings of the various primary underground cables used by Newfoundland Power.

V	Table 1 Winter Planning Ampacity Ratings for PILC Cables (Copper Conductor)								
Size	Size Direct Buried Number of Cables in Ductbank								
	1 Circuit	2 Circuit	1	2	3	4	5	10	
4/0	327	305	294	267	241	226	212	173	
250	361	335	323	294	265	248	231	188	
350	438	404	390	353	317	296	275	222	
400	470	434	418	378	338	315	293	235	
500	535	492	473	426	380	354	329	263	
750	669	609	682	522	462	430	398	315	
1000	774	701	666	595	523	486	448	353	

Winter	Table 2 Winter Planning Ampacity for XLPE Cables (Copper Conductor)							
Size		Nu	mber of (Cables in I	Ouctbank			
	1	2	3	4	5	10		
1/0	214	195	176	165	154	126		
4/0	316	288	260	244	228	186		
250	347	316	285	266	248	203		
350	419	379	340	318	295	238		
500	510	460	409	382	354	284		
750	629	564	499	465	430	341		

Table 1 and Table 2 are based on the following set of environmental and operating conditions:

80°C conductor temperature for PILC 90°C conductor temperature for XLPE 5°C ambient earth temperature 100% load factor 90 [°C x cm/watt] earth thermal resistivity

Overload is permissible for short periods of time. CLPU of up to 2.0 times the planning rating is acceptable assuming the CPLU event is limited to 1.0 hr.

Tables 3 and Table 4 provide the emergency continuous ratings for cables. The emergency ratings are the maximum load that may be carried for an extended period in winter.

Emergen	Table 3 Emergency Winter Ampacity for PILC Cables (Copper Conductor)						
Size	Buried	Duct					
4/0	357	321					
250	394	353					
350	478	427					
400	514	457					
500	585	518					
750	731	637					
1000	847	729					

Table 4 Emergency Winter Ampacity for XLPE Cables (Copper Conductor)					
Size	Size Ampacity				
1/0	245				
4/0	362				
250	397				
350	350 479				
500 584					
750	720				

Tables 3 and 4 are based on the following conditions:

100°C conductor temperature for PILC Cables

130°C conductor temperature for XLPE Cables

5°C ambient earth temperature

100% load factor

90 [°C x cm/watt] earth thermal resistivity

Maximum duration for emergency ratings:

PILC Cables - 36 hours for PILC Cables, and there shall be no more than three emergency operations per year and only one emergency period per year for the life of the cable.

XLPE Cables 100 hours per year and 500 hours over the entire life of the cable.

Tables 5 and Table 6 provide the summer continuous ratings for cables.

Con	Table 5 Continuous Summer Ampacity Ratings for PILC Cables (Copper Conductor)								
Size	e Direct Buried Number of Cables in Ductbank								
	1 Circuit	2 Circuit	1	2	3	4	5	10	
4/0	279	260	251	228	206	193	180	147	
250	308	286	275	251	226	211	196	160	
350	374	345	333	301	270	252	234	188	
400	402	370	356	322	287	268	249	199	
500	457	420	404	363	323	301	279	222	
750	571	519	496	444	393	365	337	265	
1000	661	598	568	506	444	412	379	297	

Table 6 Continuous Summer Ampacity Ratings for PILC Cables (Copper Conductor)							
Size		Num	ber of C	ables in Du	ıctbank		
	1	2	3	4	5	10	
1/0	187	170	154	144	135	110	
4/0	277	252	227	213	199	163	
250	304	276	249	233	217	177	
350	366	332	297	278	258	208	
500	446	402	358	334	310	248	
750	550	493	437	406	376	298	

Table 5 and 6 are based on the following set of environmental and operating conditions:

80°C conductor temperature for PILC

90°C conductor temperature for XLPE

25°C ambient temperature

100% load factor

90 [°C x cm/watt] earth thermal resistivity

PUB-NP-146 Attachment C Supply Issues and Power Outages on the Island Interconnected System

Requests for Information

Newfoundland Power Distribution Aerial Cable Ratings Table 1 provide the planning ampacity ratings of the various aerial cables used by Newfoundland Power

Table 1 Ampacity Ratings for Aerial Cables							
Size and Type	Continuous Winter Size and Type Continuous Winter Ampacity ¹ (A) Emergency Winter Ampacity ² (A) Continuous Summer Ampacity ³ (A)						
2/0 Rubber	312	338	258				
2/0 XLPE	331	376	281				
4/0 XLPE	437	496	371				

Notes:

1. The planning ampacity rating is the continuous winter ampacity which is based on the following set of environmental and operating conditions:

80°C conductor temperature for Rubber 90°C conductor temperature for XLPE 0°C ambient air temperature 100% load factor

Overload is permissible for short periods of time. CLPU of up to 2.0 times the planning rating is acceptable assuming the CPLU event is limited to 1.0 hr.

2. The emergency winter ampacity rating can be used for up to 100 hours per year and 500 hours over the entire life of the cable. The emergency rating is based on the following:

100°C conductor temperature for Rubber Cables 130°C conductor temperature for XLPE Cables 0°C ambient air temperature 100% load factor

3. The continuous summer ampacity rating is based on the following set of environmental and operating conditions:

80°C conductor temperature for Rubber 90°C conductor temperature for XLPE 25°C ambient air temperature 100% load factor

PUB-NP-146 Attachment D Supply Issues and Power Outages on the Island Interconnected System

Requests for Information

Newfoundland Power Transmission Aerial Conductor Ratings

Table 1 Transmission Conductor Ratings					
Size and Type	Continuous Winter Rating ¹	Continuous Summer Rating ²			
	Amps	Amps			
4/0 AASC	474.3	389.0			
477 ASC	779.9	640.6			
715.5 ASC	1,003.9	825.5			
397.5 ACSR	712.7	585.4			
559.5 AASC	875.6	719.7			
1/0 AASC	303.3	248.4			
1/0 ACSR	302.3	247.6			
1/0 Copper	379.3	310.6			
244.4 ACSR	563.8	463.1			
266.8 ACSR	550.4	451.7			
2/0 AASC	352.1	288.5			
2/0 ACSR	350.4	287.2			
336.4 ACSR	639.9	525.4			
4/0 ACSR	471.5	386.7			
500 ASC	816.4	670.7			
350 MCM Cable	608.0	516.1			
1000 MCM Cable	865.2	754.9			

Notes:

1. The continuous winter rating is based on the following conditions:

75°C conductor temperature 0°C ambient air temperature 2 ft/s wind speed 100% load factor

This rating can be exceeded during abnormal system conditions when the ambient air temperature and wind speed exceed the 25°C and 2 ft/s conditions assumed for the table.

2. The continuous summer rating is based on the following conditions:

75°C conductor temperature 25°C ambient air temperature 2 ft/s wind speed 100% load factor

This rating can be exceeded during abnormal system conditions when the ambient air temperature and wind speed exceed the 25°C and 2 ft/s conditions assumed for the table.

PUB-NP-146 Attachment E Supply Issues and Power Outages on the Island Interconnected System

Requests for Information

Newfoundland Power Transmission Underground Cable Ratings

Table 1 Transmission Underground Cable Ratings				
Size and Type	Continuous Winter Rating ¹	Continuous Summer Rating ²		
	Amps	Amps		
350 MCM Cable (12L, 14L)	608.0	516.1		
1000 MCM Cable (4L, 13L)	865.2	754.9		

Notes:

1. The Continuous Winter Cable Rating is based on the following set of environmental and operating conditions:

6 single phase conductor duct bank 110°C conductor temperature 20°C ambient earth temperature 75% load factor 90 [°C x cm/watt] earth thermal resistivity

2. The Continuous Summer Cable Rating is based on the following set of environmental and operating conditions:

6 single phase conductor duct bank 85°C conductor temperature 20°C ambient earth temperature 75% load factor 90 [°C x cm/watt] earth thermal resistivity