1	Q.	Reference PUB-NLH-217, pages 9-10: Does the total power capacity of 1650MW to
2		1680MW include or exclude 300MW import from ML? If it does include the 300MW
3		from ML, what would be the LOLH resulting from one bipolar trip with a repair time
4		of 4 hours, 24 hours and 2 weeks without 300MW from ML in the years from 2020
5		forward?
6		
7		
8	Α.	Reference PUB-NLH-217, pages 9-10: the total power capacity of 1650 MW to
9		1680 MW represents the Hydro Island Interconnected system capacity in the case
10		of a permanent LIL outage from the time Holyrood is retired until 2023. It includes
11		300 MW of import capacity over the ML.
12		
13		In order to calculate the LOLHs for the sensitivities requested, the LIL outages were
14		converted to an equivalent forced outage rate per pole for the LIL. From GRK-NLH-
15		060 (Revision 1, Mar 2-15), the bipole is forecast to have 9.5 hours per year of
16		downtime (Table 3-2). For loss of a single pole (monopole), the forecast is
17		70.6 hours per year. This gives a total of 80.1 hours per year of downtime, which,
18		when divided by 8760 hours per year gives a base forced outage rate of 0.91%
19		(Table: Combined – Forced Outage Rates). This forced outage rate was used then
20		for each pole of the bipole.
21		
22		For the sensitivities requested, for example, one bipole trip per year with a four
23		hour repair time, gives a bipole outage downtime of four hours per year. From this,
24		the same procedure was then used to calculate the respective forced outage rates,
25		as shown in Table 1.

PUB-NLH-589 Island Interconnected System Supply Issues and Power Outages

Page 2 of 2

Calculation of Forced Outage Rates

					Total
				Hours in	Forced
Case	Downtime (hrs/yr)			one Year	Outage
	Bipole	Monopole	Total		Rate
Base	9.5	70.6	80.1	8760	0.91%
4 Hours	4	70.6	74.6	8760	0.85%
24 Hours	24	70.6	94.6	8760	1.08%
2 Weeks	336	70.6	406.6	8760	4.64%

Table 1

Table 2 shows the the LOLH resulting from one bipolar trip annually with a repair 2 3 time of 4 hours, 24 hours and 2 weeks without 300MW from ML in the years from 2020 to 2035. 4

5

1

	P-50				
	Peak	Case			
	Demand	Base	4 Hours	24 Hours	2 Weeks
	MW	LOLH	LOLH	LOLH	LOLH
2020	1725	0.14	0.12	0.19	0.04
2021	1733	0.15	0.13	0.21	0.15
2022	1744	0.16	0.14	0.23	0.53
2023	1754	0.17	0.15	0.24	0.65
2024	1767	0.18	0.16	0.26	0.77
2025	1783	0.20	0.18	0.29	0.97
2026	1803	0.32	0.28	0.44	2.02
2027	1821	0.37	0.33	0.51	2.47
2028	1842	0.47	0.42	0.63	3.23
2029	1862	1.04	0.94	1.33	7.97
2030	1874	1.18	1.07	1.50	9.05
2031	1894	1.38	1.26	1.76	10.48
2032	1911	1.53	1.40	1.94	11.26
2033	1927	1.84	1.69	2.31	13.30
2034	1944	2.24	2.06	2.77	15.48
2035	1961	2.62	2.43	3.19	16.84

LOLHs Resulting From One Bipole Trip Annually - ML Not In-Service