1	Q.	The response to GRK-NLH-038 states that after MHI's initial review Nalcor made		
2		changes to upgrade designs and provide increased reliability particularly in the Long		
3		Range Mountains and other regions in Labrador. Explain in detail the specific design		
4		changes that were made, the time they were made and how such changes will		
5		provide increased reliability.		
6				
7				
8	A.	The changes to the transmission line design were the result of the completion of		
9		detailed engineering at project sanction. During Phase III (detailed) engineering for		
10		the transmission line, several design features were implemented to improve		
11		reliability:		
12				
13		a) The guyed structure configuration will naturally resist failure from		
14		cascading events and is more stable in the rugged terrain found along		
15		the route;		
16		b) Provision of special anti-cascade towers every ten to 20 structures to		
17		contain and isolate failures and prevent them from impacting large		
18		sections of line;		
19		c) In sections of the transmission line with the most severe combined ice-		
20		and-wind loading, the spans have been shortened appropriately to		
21		reduce structure loading to manageable levels;		
22		d) Selection of a single large conductor in place of a multi-bundled		
23		conductor arrangement;		
24		e) Insulator suppliers were limited only to vendors with international		
25		reputations for quality, [and] operational reliability;		
26		f) The average tower strength utilization on tangent towers will be		
27		somewhat less than designed capacity. This has the effect of increasing		

Island Interconnected System Supply Issues and Power Outages Page 2 of 2

		rage 2 01 2
1		tower resistance and stability during extreme weather events, thus
2		increasing overall reliability;
3	g)	Sections of the final alignment within the route corridor were adjusted
4		to reduce exposure to the extreme climatic-loading regions such as the
5		Long Range Mountain Ridge, and to avoid areas where the terrain acts to
6		accelerate and funnel the wind;
7	h)	Tower window dimensions and spans are designed to comply with the
8		most up-to-date theory predicting conductor motion in extreme wind
9		and ice events. This will reduce if not eliminate outages during these
10		events, increasing the overall transmission line reliability; and
11	i)	Tower prototype testing on the most common line structures to affirm
12		capacity and behaviour. Testing, which has now been completed, has
13		confirmed conformance to specifications.
14		
15	All of thes	se design features were confirmed and incorporated into the transmission
16	line durin	g detailed design engineering for the line.