Page 1 of 1

1	Q.	Further to PUB-NLH-271 if the remaining synchronous condensers are offline what
2		will be the risk to the Island Interconnected system in the event of a high inertia
3		synchronous condenser being tripped because of a fault while the Labrador Island
4		Link is operating at high power? How long will it take before an offline synchronous
5		condenser can be put on-line?
6		
7		
8	A.	The system analysis completed for the addition of the Labrador-Island HVdc Link
9		(LIL) indicates that with two high inertia synchronous condensers in service along
10		with the other two synchronous condensers at Holyrood (Holyrood Unit 3 and an
11		additional nominal 120 MVAR unit) and the LIL operating near capacity during peak
12		load periods, a fault on the 230 kV bus at Soldiers Pond followed by the tripping of
13		one high inertia synchronous condenser (leaving one high inertia synchronous
14		condenser in service) will result in a stable system following the contingency.
15		
16		With respect to starting of offline synchronous condensers, the specification for the
17		high inertia synchronous condensers requires a 15-minute start time.