1	Q.	Reference: Hydro's November 30, 2016 Energy Supply Risk Assessment
2		On Page 2 of Hydro's TL267 Monthly Status Update Report, dated December 15,
3		2016, it states:
4		"These activities will continue to be monitored very closely as continued slippage on
5		these items could impact the energization date. The contractor is in the process of
6		preparing a recovery plan to get back on schedule with these tasks."
7		Please explain the impact on Hydro's near-term Energy Supply Risk Assessment if
8		transmission line TL267 is not available for the 2017/2018 winter season as
9		currently planned.
10		
11		
12	A.	While Hydro anticipates TL267 to be in service and available for the 2017-18 winter
13		season, Table 1 presents the resultant Expected Unserved Energy (EUE) in excess of
14		planning criteria with and without TL267 inservice for Winter 2017-18.
15		
16		As shown in Table 1, if TL267 is not inservice for winter 2017-18, there is EUE in
17		excess of planning criteria for the fully stressed reference case and the three
18		sensitivity load projections. This results from higher overall system demand
19		associated with increased transmission losses, as TL267 is not yet available, as well
20		as the increase in Avalon demand relative to Island Interconnected System demand
21		for winter 2017-18 relative to winter 2016-17. The increase in Avalon demand
22		relative to Island Interconnected System demand for winter 2017-18 compared to
23		winter 2016-17 is due to forecast increased demand requirements for Vale at Long
24		Harbour.

Table 1 – Summary of Results:

2 TL267 inservice in winter 2017-18 vs. TL267 not inservice for winter 2017-18

1

P90 Analysis						
	With TL267 in service for		Without TL267 in service			
	Winter 2017/18		for Winter 2017/18			
Year	2016/17	2017/18	2016/17	2017/18		
	Expected U	Expected Unserved Energy in Excess of Planning				
	Criteria (MWh)					
Expected Case	-	-	-	101		
Fully Stressed Reference Case	-	-	-	101		
Sensitivity Load Projection I	-	-	-	133		
Sensitivity Load Projection II	15	1	15	142		
Sensitivity Load Projection III	24	-	24	145		
	Incremental Annual Expected Outage Hours					
Expected Case	-	•	-	16,900		
Fully Stressed Reference Case	-	ı	-	16,900		
Sensitivity Load Projection I	-	-	-	22,100		
Sensitivity Load Projection II	2,500	-	2,500	23,700		
Sensitivity Load Projection III	4,000	-	4,000	24,100		

Note: Planning Criteria is EUE = 300 MWh; 50,000 Annual Expected Outage Hours