Page	1	of	4
------	---	----	---

1	Q.	The responses to Requests for Information PUB-NLH-2017 and GRK-NLH-068			
2		describe in general how the system will be designed to respond to a permanent			
3		bipole failure. Please provide any design criteria that will be used to design the			
4		system to respond to a bipole failure. In the response please provide the following			
5		information:			
6		1) Initial design estimates for the time from bipole failure to restoring supply in			
7		accordance with the 22 corrective actions outlined in Table 16 of the Teshmont			
8		Report.			
9		2) Whether the level of exports will be managed to limit exposure to customers			
10		from load shedding for potential bipole failures.			
11		3) Whether there is a limit to the amount of load shed beyond which there is			
12		potential for a shut-down of the total island interconnected system.			
13		4) The extent to which the total load requirements on the island will impact the			
14		time required to restore supply.			
15		5) The extent to which the duration of the repair to a bipole failure might impact			
16		the time required to restore supply.			
17		6) Whether the load shedding scheme will require a greater portion of the load on			
18		the Avalon Peninsula to be shed than on the rest of the island interconnected			
19		system.			
20		7) Any considerations given to potential cold load pickup issues in designing the			
21		system response.			
22					
23					
24	Α.	The system response in the event of a bipole failure is summarized as follows:			
25		1) Initial design estimates for the time from bipole failure to restoring supply in			
26		accordance with the 22 corrective actions outlined in Table 16 of the			
27		Teshmont Report.			

1		Please see Hydro's response to PUB-NLH-617 for discussion relating to these
2		time requirements.
3		
4	2)	Whether the level of exports will be managed to limit exposure to
5		customers from load shedding for potential bipole failures.
6		
7		In the event of a contingency involving the Labrador Island Link, exports
8		over the Maritime Link would be curtailed to avoid under frequency load
9		shedding within the IIS. The coordination of import from Labrador and
10		export to Nova Scotia therefore ensures compliance with Hydro's
11		Transmission Planning Criteria. This coordinated operation also ensures that
12		load shed is minimized in the event of a permanent bipole failure.
13		
14		It should also be noted that dispatch over the HVdc links would be limited
15		under adverse conditions such as lightning, in accordance with good utility
16		practice.
17		
18	3)	Whether there is a limit to the amount of load shed beyond which there is
19		potential for a shut-down of the total island interconnected system.
20		
21		Please see Hydro's response to PUB-NLH-569 from Phase I of the Island
22		Interconnected System Supply Issues and Power Outages for discussion
23		relating to requirements for controlled load shed.
24		
25	4)	The extent to which the total load requirements on the island will impact
26		the time required to restore supply.

1		Load restoration time would be a function of the amount of load shed and
2		the capacity shortfall before backup generation is brought online. Hydro's
3		operating procedures are such that adequate reserve levels must be
4		maintained during all loading conditions. These reserve levels would help to
5		minimize restoration times throughout the year. Details relating to the
6		worst case capacity shortfall would be in accordance with Hydro's response
7		to PUB-NLH-617.
8		
9	5)	The extent to which the duration of the repair to a bipole failure might
10		impact the time required to restore supply.
11		
12		Hydro's Transmission Planning Criteria are such that there shall be no under
13		frequency load shedding for the temporary loss of a bipole. In the event of
14		the permanent loss of the Labrador Island Link, restoration procedures shall
15		be in accordance with Hydro's response to PUB-NLH-617. If the Labrador
16		Island Link can be restored before other sources of backup generation are
17		brought online, the additional capacity would allow for load restoration to
18		be accelerated.
19		
20	6)	Whether the load shedding scheme will require a greater portion of the load
21		on the Avalon Peninsula to be shed than on the rest of the island
22		interconnected system.
23		
24		Hydro's future under frequency load shedding scheme will be designed in a
25		study to be completed in 2016/2017. This consideration will be addressed in
26		this study.

1	7)	Any considerations given to potential cold load pickup issues in designing
2		the system response.
3		
4		The work completed by Hydro in the under frequency load shedding study
5		discussed above will help to minimize cold load pickup issues. The analysis
6		will involve the design of a scheme where load shed is minimized and the
7		loss of generator synchronism is avoided.
8		
9		As stated above, Hydro must maintain adequate reserve levels. By also
10		ensuring that equipment such as the synchronous condensers at Soldiers
11		Pond Terminals Station remain online following the loss of the bipole, the
12		availability of dynamic voltage support will further facilitate the restoration
13		process.
14		
15		Upon completion of the under frequency load shedding study, Hydro will
16		work in cooperation with Newfoundland Power to implement an effective
17		under frequency load shedding scheme that will minimize customer impact.