1	Q.	Reference: CA-NLH-081: The response addresses the double contingency assuming			
2		the total loss of the LIL and one circuit in the Bay d'Espoir to Western Avalon			
3		transmission corridor. What is the probability of occurrence of this double			
4		contingency? Further, the LIL and Bay d'Espoir to Western Avalon transmission			
5		corridors appear to be very close geographically where they cross into the Avalon			
6		Peninsula. What is the probability of loss of both corridors; i.e., loss of all			
7		transmission into the Avalon Peninsula?			
8					
9					
10	A.	Supply to the Avalon Peninsula will consist of four transmission paths between off			
11		Avalon Peninsula resources and on Avalon Peninsula load and resources including:			
12					
13		 TL203 (230 kV) connecting Sunnyside¹ and Western Avalon Terminal 			
14		Stations;			
15		• TL207/237 (230 kV) connecting Sunnyside and Western Avalon Terminal			
16		Stations via Come By Chance Terminal Station;			
17		• TL267 (230 kV) connecting Bay d'Espoir and Western Avalon Terminal			
18		Stations; and			
19		 Labrador – Island HVdc Link (LIL – L3501/3502). 			
20					
21		For the area west of the Sunnyside Terminal Station, failures in the Bay d'Espoir –			
22		Western Avalon and Labrador - Island HVdc Link corridors are expected to be			
23		independent as the transmission corridors are separated geographically.			

¹ The Sunnyside Terminal Station is connected to the Bay d'Espoir Terminal Station via two parallel 230 kV transmission lines TL202 and TL206.

Page 2 of 4

Table A.2 found in CAN/CSA 22.3 No. 60826-10 (reproduced below) estimates the 1 2 failure rate of a transmission line in relation to its return period. 3

Table A.2 - Relationship between reliability levels and return periods of limit loads

	Return period of limit loads, T		50	150	500
	Yearly minimum reliability	P _{s1}	0,98 to 0,99	0,993 to 0,997	0,998 to 0,999
	Yearly failure probability	P _{f1}	0,02 to 0,01	0,0067 to 0,0033	0,002 to 0,001
	Reliability during 50 years life cycle	P _{s50}	0,36 to 0,61	0,71 to 0,86	0,90 to 0,95
	Theoretical probability of failure during 50 years life cycle	P _{f50}	0,64 to 0,39	0,29 to 0,14	0,10 to 0,05
4 5					
6	The probability of two fai	lures occuri	ring during th	e same two-we	ek period would
7	be assessed as follows:				
8					
9	Step 1				
10	The base yearly failure pr	obability is	taken from tł	ne CAN/CSA 22.	3 No. 60826-10
11	Table A.2 for each of the	transmissio	n lines under	consideration.	The LIL probability
12	is based upon the 150-yea	ar return pe	eriod. The pa	rallel path consi	ists of three 230 kV
13	transmission lines. Both	transmission lines. Both TL202 and TL206 have a return period of at least 25 years,			
14	while TL267 will have a de	esign return	n period of at	least 50 years.	
15					
16				High	Low
17	P _{yearly failure} (150 year return	n period - Ll	IL)	0.0067	0.0033
18	P _{yearly failure} (50 year return	period –TL2	267)	0.02	0.01
19	P _{yearly failure} (25 year return	period – TL	.202/206) ²	0.04	0.02
20					
21					

² A 25 year return period has a yearly failure probability of 4%. The low value in the range is taken as one-half the higher probability.

Page 3	3 of	4
--------	------	---

1	Step 2			
2	The probability of a line failure within a two-week period is derived by dividing the			
3	annual failure probability by 26.			
4				
5		High	Low	
6	P _{2 week failure} (150 year return period - LIL)	0.00026	0.00013	
7	P _{2 week failure} (50 year return period –TL267)	0.00077	0.00038	
8	P _{2 week failure} (25 year return period – TL202/206)	0.00154	0.00077	
9				
10	Step 3			
11	To calculate the probability of a double line failure	during a two-w	eek period one	
12	must select the two lines to be considered for the c	louble failure if	all lines do not	
13	have equal probability of failure. The probability of	failure of the t	two lines in	
14	separate corridors is calculated by multiplying the i	ndividual line f	ailure	
15	probabilities given that the failure modes are indep	endent for geo	graphically	
16	separate corridors.			
17				
18	For the double contingency loss of TL202 or TL206 a	and LIL the pro	bability of failure	
19	for the two week period is estimated to be between	n 4 x 10 ⁻⁶ (i.e., ().00026 *	
20	0.00154) and 1 x 10^{-6} (i.e., 0.00013 * 0.00077).			
21				
22	For the double contingency loss of TL267 and LIL th	e probability o	f failure for the	
23	two week period is estimated to be between 2 x 10^{-6} (i.e., 0.00026 * 0.00077) and			
24	4.9 x 10 ⁻⁸ (i.e., 0.00013 * 0.00038).			
25				
26	On the Isthmus of Avalon, the three 230 kV transmi	ssion lines (TL2	203, TL207/237	
27	and TL267) and the LIL will be located in the same t	ransmission co	rridor. When all	

CA-NLH-113 Island Interconnected System Supply Issues and Power Outages Page 4 of 4

1	lines are in the same corridor, one cannot discount the possibility that a weather
2	event of sufficient severity would damage all lines in the corridor. In other words,
3	consideration must be given to a common mode event. As a minimum the event
4	must exceed the LIL design in this region of a 500-year return period. As such, the
5	yearly failure probability for all four lines in the corridor would be estimated to be
6	between 0.002 and 0.001. Previous operational experience, as described in Exhibit
7	85 of the Muskrat Falls Review, indicates that damage is often localized, and that all
8	structures on the corridor may not be affected equally. These micro-level effects
9	cannot be quantified probabilistically.