1	Q.	With respect to Project B-22, Upgrade Unit 3 Air Preheater Steam
2		Condensate System, how was the fuel system estimate of \$160,000 per year
3		arrived at? What fuel savings per year have been measurably achieved by
4		the similar modifications of Units 1 and 2?
5		
6		
7	A.	It has been necessary to operate Unit 3 boiler with its combustion air heater
8		operating at higher steam pressure than normal, to evacuate all the
9		condensate from the air heaters. This higher steam pressure raises the
10		average cold end temperature (ACET) higher than optimal (in essence, this
11		means that the temperature of the exhaust gas exiting the stack is higher
12		than it otherwise needs to be, consuming more fuel). The installation of a
13		condensate pumping system will enable a reduction of steam pressure,
14		thereby lowering ACET and reducing fuel consumption. This reduction in fuel
15		consumption will result in a saving of \$160,00.00 per year.
16		
17		Fuel savings resulting from similar modifications to Units 1 and 2 have not
18		been measured, however, it is possible to operate these units at the lower
19		ACET without incurring piping system damage.