



## Newfoundland and Labrador Hydro, a Nalcor Energy Company

## Holyrood Condition Assessment & Life Extension Public Utility Board Technical Review Oct 13, 2011



## Agenda - AMEC



- 1. Safety Moment
- 2. AMEC Introductions
- 3. AMEC Overview
- 4. AMEC Holyrood CALE Team
- 5. Key Highlights

## APPENDIX

- A. Project Scope and Basis
- B. EPRI Condition Assessment Method



# Safety Moment – Travel Planning



# **AMEC Introductions**

## **AMEC Introductions**



### **Blair Seckington**

- Director, Power & Process Consulting, 36 years power experience
- AMEC Mechanical/Project Manager. Life management/capital plan Burrard GS. Condition assessment – Holyrood TGS. Project screening and pre-feasibility lead for various power projects
- OPG Senior Fossil Technology Advisor Fossil business capital plan and project reviews for executive office. Led OPG selective catalytic NOx control and revenue metering corporate programs

#### Andrew DuPlessis

 Electrical Engineer/Project Manager. AMEC Power Utility Leader for Atlantic Canada. Lead Electrical Engineer for various Power Projects for NB Power, OPG and NSPI. Over 20 years experience in power.



# **AMEC** Overview

## AMEC at a Glance



- FTSE 100 company
- Revenues
- Employees
- Net cash

Market cap\* US\$2.875bn Approximately US\$5bn Approximately 27,000 Approximately US\$1bn

#### **Aspiring to Operational Excellence**

\*As at the close, 15 January 2009

## **Office Locations**





Our 27,000 employees operate from more than 40 countries

Natural Resources

Operates in the oil and gas services, unconventional oil (oil sands), and mining market segments

Power and Process Operates in the power, industrial process, biofuels, and nuclear market

Environment and Infrastructure Provides specialist consultancy and engineering services





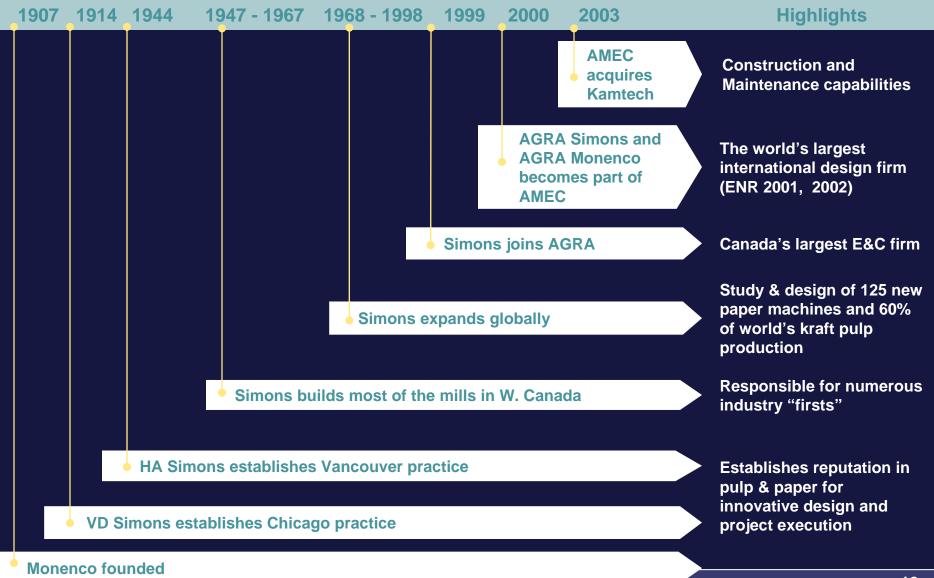




## **Leading Market Positions – Power and** Process






## **Select Power Clients**





## **AMEC Power and Process Americas**







# AMEC Holyrood CALE Team

## **AMEC Project Team**





## **Project Team**



- Blair Seckington Mechanical/Process Engineer/Project Manager.
   OPG Fossil Technology. AMEC Director, Power Technology. Over 36 years experience in power.
- Ian Leach Operations and Maintenance Specialist. Over 41 years experience in Ontario and Alberta. A key member of BC Hydro Burrard studies and led Holyrood Fire Emergency procedure
- Vishan Sharma Steam Turbine/Mtce Expert. Over 39 Years power experience including OPG and Monenco. Led the Point Lepreau turbine Efficiency assessment. Some involvement in Holyrood design.
- Bob Jeffreys Turbine-Generator Electrical Specialist. 40+ years power experience (Nant/Lakeview/SaskPower Synch Cond Exp)
- David McNabb (NSS) Power Plant Mechanical Systems; Life Cycle and Asset Management. 35+ Years of mechanical systems, high pressure water/steam analysis

## **Project Team**



- Scott Bennett 32 years in mechanical system designs for commercial, institutional, industrial and residential infrastructure sectors, and as a senior engineering manager and project manager
- David Jones 40+ years of engineering and operations experience on power, instrumentation and control systems for marine offshore equipment facilities, steel and paper mills, hydroelectric plants, transmission, distribution and terminal station systems
- David Ennis 10 Years of industrial and commercial mechanical engineering for commercial facilities, marine offshore equipment facilities, and steel and paper mills.

## **Project Team – Additional Support**



- Dr. M Natarajan 40+ years in power generation: feasibility studies, environmental control technologies, plant condition assessments and life extension, plant performance audits, EPCM and EPC projects. Installation and commissioning work on Holyrood Units 1, 2 and 3 plus boiler studies, fuel conversion and site repowering. Worked with Nova Scotia Power (Tuft's Cove design, Pt Tupper oil to coal conversion, Lingan design, Trenton fuel studies, and Pt Aconi CFBC operational studies) and with New Brunswick Power (Coleson Cove senior technical advisor from conceptual design stage up to and including the FGD addition and ESP retrofit to the 3 X 350 MW oil fired units, Belledune design and planning studies)
- Bill Caldwell 29 years design experience in industrial power systems and hydroelectric projects from 20 MW to 1000 MW, including electrical machinery, power distribution and transmission, protection, instrumentation and control, power electronics and material handling. PE in Newfoundland, Quebec and Ontario.
- Bill Tucker 25+ years in marine and structural design, project management, structural design, stability analysis and repair recommendations on hydro projects in Newfoundland

## **Project Team - NSS**



AMEC NSS Specialist Resources – Boiler & High Pressure Piping

- David McNabb (NSS) Power Plant Mechanical Systems; Life Cycle and Asset Management. 35+ Years of mechanical systems, high pressure water/steam analysis
- Tahir Mahmood (NSS) Engineer, Life Cycle and Asset Management. 5+ Years of mechanical systems, high pressure water/steam analysis
- Avik Sarkar (NSS) Senior Engineer, Life Cycle and Asset Management. 10 Years of mechanical systems, high pressure water/steam analysis
- Ming Lau (NSS) Senior Technical Expert, Performance Engineering; Life Cycle and Asset Management. 20+ Years of mechanical systems, high pressure water/steam analysis



# Key Highlights

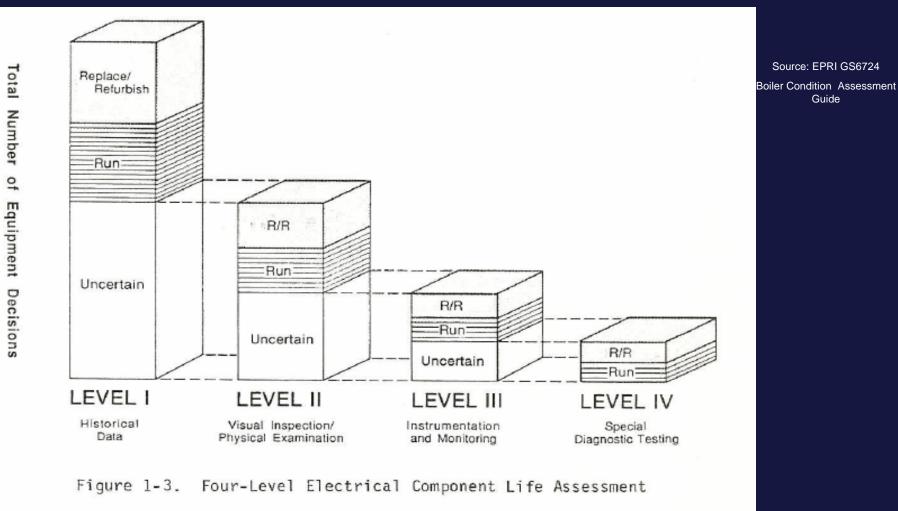
## **NLH Basis**



Primary Study Focus (for 2020 Generation & 2041 Synchronous Condensing):

- Generators;
- Switch gear and switchyard;
- Control system associated with generators;
- Station auxiliary systems;
- Buildings and building M and E system;
- Cooling water system associated with generators;
- Transformers;
- Gas turbine and diesel gensets;
- Hydrogen and carbon dioxide;
- Compressed air; and
- Generator lube oil.

## **NLH Basis**




Reduced Study Emphasis (Maintain Reliable Generation to 2020):

- Fuel Systems (light and heavy oil)
- Boiler System
  - Boilers; feed water system; heat exchangers; condensers
  - Deaerators; FD fans; air preheaters; Stacks
  - DCS associated with steam systems
  - Electrical & instrumentation associated with steam systems
- Steam turbines;
- Cooling water system associated with steam systems;
- Waste water treatment facility;
- Water treatment system; and
- (Marine terminal)

## **EPRI Condition Assessment Method**





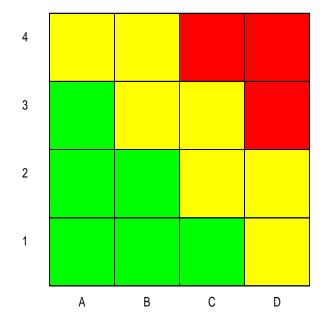
Source: Cambrias and Rittenhouse (9)

## **Condition Assessment**



## **Technical Risk Assessment**

#### Likelihood of Failure Event:


- 1. Greater than 10 years
- 2. 5 to 10 years
- 3. 1 to 5 years
- 4. Immanent (< 1 year)

#### Consequence of Failure Event:

- A. Minor (\$10k-\$100k or derating/1 day outage)
- B. Significant (\$100k-\$1m or 2-14 days outage)
- C. Serious (\$1m-\$10m or 15-30 days outage)
- D. Major (>\$10m or >1 month outage)

#### Actions:

- Items that do not apply are not ranked
- Low Risk: Monitor long term (within 5 years)
- Medium Risk: Investigate and monitor short term. Take action where beneficial
- High Risk: Corrective action required short term



## **Condition Assessment**



## Safety Risk Assessment

#### Likelihood of Safety Incident Event:

- 1. Improbable so that it can be assumed not to occur
- 2. Unlikely to occur during life of specific item/process
- 3. Will occur once during life of specific item/process
- 4. Likely to occur frequently

#### Consequence of Safety Incident Event:

- A. Minor will not result in injury, or illness
- B. Marginal may cause minor injury, or illness
- C. Critical may cause severe injury, or illness
- D. Catastrophic may cause death

#### Actions:

- Items that do not apply are not ranked;
- Low Risk: Monitor, take action where beneficial;
- Medium Risk: Investigate and monitor short term. Take action where beneficial; and
- High Risk: Unacceptable. Corrective action required short term

| 4 |   |   |   |   |
|---|---|---|---|---|
| 3 |   |   |   |   |
| 2 |   |   |   |   |
| 1 |   |   |   |   |
|   | Α | В | С | D |



### **Priority Assessment**

Priority assigned to the "Recommended Actions", "Level 2 Inspections", and "Capital Enhancements".

Scale of "1" to "4". "1" is the highest priority - this activity should definitely be undertaken and where practical in or about the timing identified. "4" is the lowest priority - the item is low risk/impact and may be much more readily delayed or undertaken in some other fashion.

Ranking is subjective relative ranking by AMEC, meant to be an aid to Hydro in allocating resources and assessing trade-offs and program delays. Ranking takes into consideration a number of aspects such as:

1. The impact (likely/worst case) on achieving the end of life (EOL) goal, on plant operation health and safety, and on environmental and regulatory requirements;

2. The urgency of the need for action;

3. The degree of certainty of the requirement;

4. The experience at Holyrood and in the broader industry context;

5. The ability to mitigate or address the issue in other ways;

6.The timing of the recommended response;

7.The cost relative to others; and

8. The ability of existing and planned or ongoing actions to resolve in a timely and successful manner.

Priorities should be taken in the context of its recommended timing. An item can be a "1", but be scheduled for a later date if it is deemed that sufficient information exists to be confident of the minimal likely impact of the deferral (usually to tie in with a planned major activity such as an overhaul).

### Plant Ops & Mtce



Asset Management & Maintenance Strategy: a "Best Practices" approach, implemented through a combination of in-house resources and external resources for major equipment technical support, overhauls, and external contracting for specialized services. Uses long term asset management and short term maintenance implementation model to ensure that both long term goals and short term needs are addressed. In most areas of the operation, the maintenance strategy and the asset management program are well implemented and consistent with other thermal generating stations across North America.

Staffing/Training: plant staffing is reasonable. Plant operators experience significant operating time and some starts and stops as on-the-job training. Some training programs run periodically on issues that may arise during operation. It is thought that some "what do you do if this happens", and "why is it done that way" scenario training might be useful. Otherwise, the training program for all plant staff seems consistent with other thermal generating facilities. Modern simulators provide opportunities to train operators for critical scenarios.

## Plant Ops & Mtce



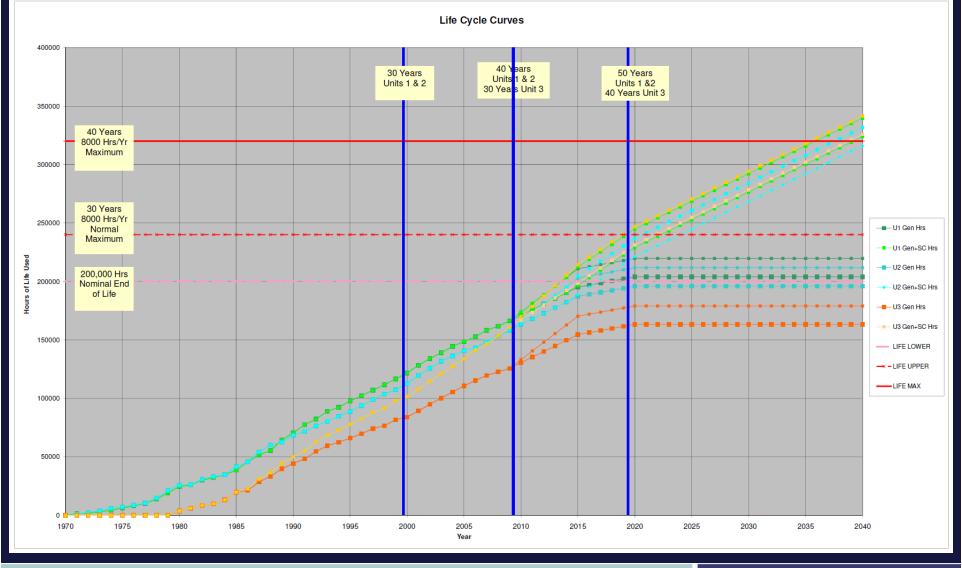
PM Program: active computer-based PM program being revised to make it more practical, including the development of additional predictive approaches. Seen as very positive given the resources, role, and maintenance approach. A more user-friendly documentation system would be helpful.

Inspections: a strong commitment to align with regulatory requirements, insurance requirements, and industry practices. Generally very thorough in implementation of PM, inspections, overhauls, and equipment replacement. High pressure piping inspections and boiler hanger inspections required. The duration between major inspections and overhauls of the steam turbines can reasonably remain at nine years subject to the findings of each overhaul, but for the generators should be reduced back to six years.

Work Management: Hand written Work Orders (WO's) should be replaced with electronic WO's. Records management (also historical design information, operations and maintenance history) document control system should be implemented.

## **Overall Plant Condition**




Fossil plants of the same era as Holyrood were designed with an economic life of 30 years. For practical purposes, this meant at least a 40 year or 200,000 operating hour technical life. Most were designed only for base load operation. In the United States, there are still plants that are in active service and quite functional, even at 60 years of age (typically older, small units in non-critical role). There are other plants being decommissioned or repowered, typically at 30+ years.

Holyrood Units 1 2, and 3 are approximately 42, 41, and 32 years old. Given their historical seasonal, and base but lightly loaded service, the operational age for some equipment and systems is more like 21, 20, and 17 years (Unit 3 including synchronous condensing is equivalent to about 20 years).

The plant has been well managed and maintained. The units have also seen minimum service at either their maximum continuous rating (let alone over-pressure/over-temperature) or at extreme minimum load. The units tend to operate between 70 and 140 MW (40% and 80% load) and most often around 110 to 125 MW (65-70%). Unit 3 has seen modest synchronous condensing operation since its retrofit in 1986.

## **Overall Plant Condition**





29



Units 1 & 2 were uprated from 150 to 175 MW in 1987. Replaced components have a longer remaining life, and support a longer station life expectation.

The boiler and its major elements were major reliability and life issues. The original high sulphur (2.5% S) and high vanadium fuel oil caused significant corrosion and fouling problems that led to frequent washings and upgrades to some of the boiler heat transfer surfaces. The change in 2009 to a higher quality, lower sulphur (0.7%) fuel oil significantly improved boiler reliability and efficiency and has already had a positive life impact.

The plant can continue to generate electricity reliably to the year 2020 and if and when Units 1 and 2 are converted to synchronous condensers to provide system support should be able to fulfill that role to 2041. There are several pre-requisites to this, including continued and enhanced inspection and maintenance programs, planned major equipment refurbishment such as generator stator and rotor rewinds, transformer monitoring, controls and alarms upgrades, and switchgear and breaker refurbishments and replacements.

## **Overall Plant Condition**



The key to extending plant life to 2020 for generation and to 2041 for synchronous condensing operation will be the generators, transformers, and switchgear and associated systems.

Units 1, 2, and 3 have major generator inspections scheduled for 2012, 2014, and 2016 respectively and have a near term need for stator and/or rotor rewinds.

Transformers are at the point in their lifecycle where significant degradation also occurs. More frequent or continuous monitoring of their condition is required to forewarn of any problems arising.

Existing switchgear is in many cases at or near end of life and refurbishment and replacement is required.

## **Overall Plant Condition**



Single contingency systems, given age and failure history should be addressed: The failure of fresh/raw water supply from Quarry Brook Pond; The failure risk of the clarifier at least until 2020; and The 42 year age and condition of the black start gas turbine (reliability, parts obsolescence)

If Hydro addresses the key issues and maintains a vigorous maintenance and inspection program, there is no technical reason that the plant cannot reach its 2020 generation and 2041 synchronous condensing life targets.

The gas turbine generator and balance of plant is in need of a more comprehensive condition assessment.



## APPENDIX

- Project Scope & Basis
- EPRI Condition Assessment Method



## **Project Scope & Basis**

## **NLH Basis**



### **Basis: Condition Assessment, Life Extension**

 Identify measures to ensure high reliability as a TGS to 2015 (CF= 30% to 75%), as a standby generating plant to 2020, and as a synchronous condensing station to 2041.

As of Jan 31, 2009, the operating hours for each unit are as follows:

| Unit 1                              | 162,482 hrs  |
|-------------------------------------|--------------|
| Unit 2                              | 154, 161 hrs |
| Unit 3                              | 123, 432 hrs |
| Unit 3 (as a synchronous condenser) | 30,956 hrs   |

 Plant may be required to generate seasonally base loaded after 2015, requiring a more extensive study to assess the cost of extending the operating life

## **Study Basis**



## • 2010 to 2015 Generation Life

- ACF/Pattern: <u>capacity factor between 30% and 75% until 2015</u>
- Reliability: High, similar to current
- Implementation Schedule:
  - − 2010 Study  $\rightarrow$  2011 Phase 2  $\rightarrow$  2012-2013 Implementation  $\rightarrow$  ??
- 2015-2020 Generation Standby
  - Capacity required
  - Operating Pattern
  - Hot/Cold Standby Time to Return
  - Reliability/Availability of Generation
- Synchronous Condensing 2015-2041
  - Capability Less Defined generator, transformers, system
  - Operating Pattern and Requirements
- Subsequent Equipment Condition Analyses Timing/Scope

### **NLH Basis**



Primary Study Focus (for reliable generation to 2020 and synchronous condensing to 2041):

- Generators;
- Switch gear and switchyard;
- Control system associated with generators;
- Station auxiliary systems;
- Buildings and building M and E system;
- Cooling water system associated with generators;
- Transformers;
- Gas turbine and diesel gensets;
- Hydrogen and carbon dioxide;
- Compressed air; and
- Generator lube oil.

### **NLH Basis**



Reduced Study Emphasis (Maintain Reliable Generation to 2020):

- Fuel Systems (light and heavy oil)
- Boiler System
  - Boilers; feed water system; heat exchangers; condensers
  - Deaerators; FD fans; air preheaters; Stacks
  - DCS associated with steam systems
  - Electrical & instrumentation associated with steam systems
- Steam turbines;
- Cooling water system associated with steam systems;
- Waste water treatment facility;
- Water treatment system; and
- (Marine terminal)

### Subsystems (Holyrood Asset Register)



#### STEAM GENERATOR

Superheater Tubing Reheater Tubing Waterwall Tubing Superheater Headers Reheater Headers Drums (Steam and Lower) Waterwall Headers Economizer Inlet Headers Main Steam Piping Hot Reheat Piping

#### TURBINE

.

Steam Chest Valve Casings Turbine Casing and Shells HP/IP Rotor LP Rotor Blades

#### GENERATOR

Rotating Field Retaining Rings Stator Windings Stator Insulation Cooling System, Housing Auxiliaries

#### BALANCE OF PLANT

Condensers Feedwater Heaters Deaerators Cables Station Main Transformers Auxiliary Switchgear



- Site visit & develop Asset Register
- Site review and equipment/facility inspections
- Review the Holyrood Plant Maintenance Program existing Information/background data; interview staff
- The AMEC team will review and analyse the information and data gained with respect to Holyrood through:
  - Existing studies on condition assessment, life expectancy, previous studies of life extension, and the associated costs (capital and O & M) of such programs

### AMEC Scope & Methodology



Condition Assessment & Life Extension

- Physical inspection reports of equipment
- Equipment Lost Time Analysis data
- Interviews and discussions with N&L Hydro Management
- Interviews/discussions with Holyrood Operations and Maintenance personnel
- Analysis of power demands vs Holyrood generation capabilities
- Analysis of the impact and value of capital upgrades and operational and maintenance improvements?



- Determine remaining equipment and facility life existing information, experience, OEM consultations, and develop life cycle curves for major critical equipment and facilities.
- Conduct an equipment risk of failure analysis for major plant components, equipment, systems, and the entire facility and identify any components or systems that require further investigation; and make recommendations for work that will be required to extend the plant's useful life into the future with the same high degree of reliability as experienced in the past.

# **NLH Basis**

| Generation   | 10 2015     | ACF-             | 40%                 | 2016 to2020        | ACE-                 |                    | 10%              |                  |
|--------------|-------------|------------------|---------------------|--------------------|----------------------|--------------------|------------------|------------------|
|              | Operating F | actor -          | 55%                 |                    | Operating Factor     | r—                 | 20%              |                  |
| Syncronous   | s Condensin | g in 2015        | 4740                | Hrs/Yr             | (1500 av to date     | + 6 mos x 30 da    | ays x7d/wk + 75% | of time)         |
|              |             |                  |                     |                    |                      |                    |                  |                  |
|              |             |                  |                     | _                  |                      |                    |                  |                  |
|              |             |                  |                     |                    | Generation           | Synch Cond         | Synch Cond       | Total            |
| Year         | ACF         | MWb/Yr           | Operating<br>Factor | Starts<br>Per Year | OP Hrs<br>Cumulative | OP Hrs<br>Per Year | OP Hrs<br>Cum    | OP Hrs<br>Cum    |
|              |             |                  | %                   | Fei leai           | Lifetime             | Per lear           | Cum              | Lifetime         |
|              |             |                  | ~                   |                    | 2.100                |                    |                  | SC+Gen           |
|              |             |                  |                     |                    |                      |                    |                  |                  |
| 2041         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 124740           | 328665           |
| 2040         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740<br>4740       | 120000           | 323925           |
| 2039         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4/40               | 115260<br>110520 | 319185<br>314445 |
| 2037         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 105780           | 309705           |
| 2036         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 101040           | 304965           |
| 2035         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 96300            | 300225           |
| 2034<br>2033 | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740<br>4740       | 91560<br>86820   | 295485<br>290745 |
| 2033         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 82080            | 290745           |
| 2031         | 0.0%        | ő                | 0.0%                | 5                  | 203925               | 4740               | 77340            | 281265           |
| 2030         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 72600            | 276525           |
| 2029         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 67860            | 271785           |
| 2028         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740<br>4740       | 63120<br>58380   | 267045           |
| 2027         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 58380<br>53640   | 262305<br>257565 |
|              | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 48900            | 252825           |
| 2025 2024    | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 44160            | 248085           |
| 2023         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 39420            | 243345           |
| 2022         | 0.0%        | 0                | 0.0%                | 5                  | 203925               | 4740               | 34680            | 238605           |
| 2021 2020    | 0.0%        | 0 148920         | 0.0%                | 5                  | 203925               | 4740<br>4740       | 29940<br>25200   | 233865<br>229125 |
| 2019         | 10.0%       | 148920           | 20.0%               | 12                 | 203925               | 4740               | 20460            | 229125           |
| 2018         | 10.0%       | 148920           | 20.0%               | 12                 | 200421               | 4740               | 15720            | 216141           |
| 2017         | 10.0%       | 148920           | 20.0%               | 12                 | 198669               | 4740               | 10980            | 209649           |
| 2016         | 10.0%       | 148920<br>595680 | 20.0%               | 12                 | 196917               | 4740               | 6240             | 203157           |
| 2015 2014    | 40.0%       | 595680           | 55.0%<br>55.0%      | 12                 | 195165<br>190347     | 1500               | 1500             | 196665<br>190347 |
| 2013         | 40.0%       | 595680           | 55.0%               | 12                 | 185529               | 0                  | 0                | 185529           |
| 2012         | 40.0%       | 595680           | 55.0%               | 12                 | 180711               | 0                  | 0                | 180711           |
| 2011         | 40.0%       | 595680           | 55.0%               | 12                 | 175893               | 0                  | 0                | 175893           |
| 2010         | 40.0%       | 595680<br>360410 | 55.0%<br>51.6%      | 12                 | 171075 166257        | 0                  | 0                | 171075<br>166257 |
| 2009         | 19.1%       | 360410           | 39.7%               | 12                 | 161737               | 0                  | 0                | 166257           |
| 2007         | 25.5%       |                  | 64.3%               | 21                 | 158261               |                    |                  |                  |
| 2006         | 20.5%       |                  | 46.5%               | 19                 | 152632               |                    |                  |                  |
| 2005         | 28.4%       |                  | 47.0%               | 6                  | 148555               |                    |                  |                  |
| 2004 2003    | 42.2%       |                  | 61.7%               | 12                 | 144438               |                    |                  |                  |
| 2003         | 44.3%       |                  | 56.9%               | 7                  | 139034               |                    |                  |                  |
| 2001         | 50.2%       |                  | 74.9%               | 16                 | 128275               |                    |                  |                  |
| 2000         | 29.2%       |                  | 59.5%               | 11                 | 121715               |                    |                  |                  |
| 1999         | 25.8%       |                  | 55.0%               | 9                  | 116501               |                    |                  |                  |
| 1998         | 35.4%       |                  | 53.9%               | 9                  | 111687               |                    |                  |                  |
| 1997<br>1996 | 36.1%       |                  | 54.2%<br>50.9%      | 7                  | 106970               |                    |                  |                  |
| 1995         | 47.3%       |                  | 63.0%               | 8                  | 97771                |                    |                  |                  |
| 1994         | 18.4%       |                  | 39.0%               | 9                  | 92250                |                    |                  |                  |
| 1993         | 48.4%       |                  | 75.0%               | 14                 | 88832                |                    |                  |                  |
| 1992         | 46.3%       |                  | 55.2%               | 22                 | 82258                |                    |                  |                  |
| 1991         | 49.6%       |                  | 80.2%<br>69.3%      | 13<br>13           | 77420 70396          |                    |                  |                  |
| 1989         | 71.9%       |                  | 102.9%              | 13                 | 64322                |                    |                  |                  |
| 1988         | 28.9%       |                  | 41.3%               | 13                 | 55311                |                    |                  |                  |
| 1987         | 49.2%       |                  | 70.4%               | 13                 | 51689                |                    |                  |                  |
| 1986         | 55.9%       |                  | 80.0%               | 13                 | 45522                |                    |                  |                  |
| 1985<br>1984 | 30.3%       |                  | 43.4%               | 13<br>12           | 38512<br>34710       |                    |                  |                  |
| 1983         | 17.4%       |                  | 28.9%               | 12                 | 34710                |                    |                  |                  |
| 1982         | 33.2%       |                  | 47.4%               | 13                 | 29994                |                    |                  |                  |
| 1981         | 10.8%       |                  | 15.5%               | 12                 | 25839                |                    |                  |                  |
| 1980         | 42.2%       |                  | 60.4%               | 13                 | 24486                |                    |                  |                  |
| 1979         | 43.1%       |                  | 61.7%               | 13                 | 19193                |                    |                  |                  |
| 1978         | 30.3%       |                  | 43.3%               | 13<br>12           | 13786<br>9994        |                    |                  |                  |
| 1976         | 15.4%       |                  | 22.0%               | 12                 | 8070                 |                    |                  |                  |
| 1975         | 15.3%       |                  | 21.9%               | 12                 | 6149                 |                    |                  |                  |
| 1974         | 11.4%       |                  | 16.3%               | 12                 | 4233                 |                    |                  |                  |
| 1973         | 8.6%        |                  | 12.4%               | 12                 | 2805                 |                    |                  |                  |
| 1972<br>1971 | 2.7%        |                  | 3.9%                | 12                 | 1723                 |                    |                  |                  |
| 1970         | 1.7%        |                  | 15.7%               | 12                 | 1378                 |                    |                  |                  |
| 1969         | 0.0%        |                  | 0.0%                |                    | -                    |                    |                  |                  |
|              |             |                  |                     |                    |                      |                    |                  |                  |



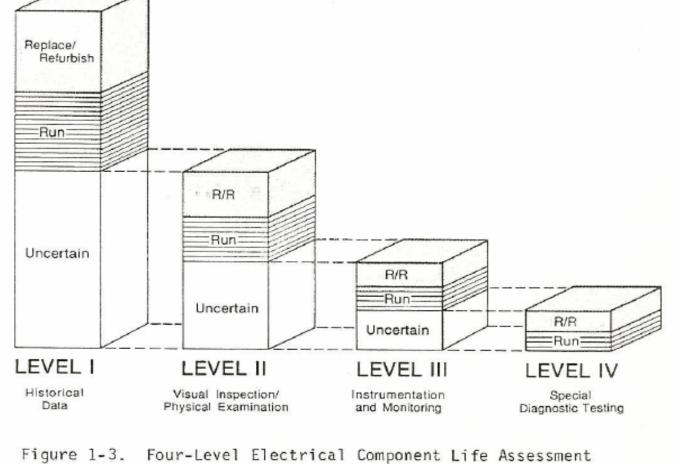
# amec®

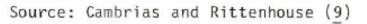
# **NLH Basis**

| Generation                                                         | to 2015        | ACF-             | 40%            | 2016 to2020      |                  |                         | 10%              |                    |
|--------------------------------------------------------------------|----------------|------------------|----------------|------------------|------------------|-------------------------|------------------|--------------------|
| Operating Factor –<br>Syncronous Condensing in 2016+               |                | 55%              | Hrs/Yr         | Operating Facto  |                  | 20%<br>ays x7d/wk + 75% | of time)         |                    |
| Syncronous Condensing in 2016+<br>Syncronous Condensing in 2011-20 |                |                  | Hrs/Yr         | (1000 av to date | + 0 mos x 30 d   | aya xrawk + 75%         | ( of time)       |                    |
|                                                                    |                |                  |                |                  |                  |                         |                  | •                  |
|                                                                    |                |                  |                |                  | Generation       | Synch Cond              | Synch Cond       | Total              |
| Year                                                               | ACF            | MWh/Yr           | Operating      | Starts           | OP Hrs           | OP Hrs                  | OP Hrs           | OP Hrs             |
|                                                                    |                |                  | Factor         | Per Year         | Cumulative       | Per Year                | Cum              | Cum                |
|                                                                    |                |                  | %              |                  | Lifetime         |                         |                  | Lifetime<br>SC+Gen |
|                                                                    |                |                  |                |                  |                  |                         |                  | SC+Gen             |
| 2041                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 167313           | 330644             |
| 2040<br>2039                                                       | 0.0%           | 0                | 0.0%           | 5                | 163331<br>163331 | 4740<br>4740            | 162573<br>157833 | 325904<br>321164   |
| 2039                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 153093           | 316424             |
| 2037                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 148353           | 311684             |
| 2036                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331<br>163331 | 4740                    | 143613<br>138873 | 306944<br>302204   |
| 2035                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740<br>4740            | 1366/3           | 297464             |
| 2033                                                               | 0.0%           | õ                | 0.0%           | 5                | 163331           | 4740                    | 129393           | 292724             |
| 2032                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 124653           | 287984             |
| 2031                                                               | 0.0%           | 00               | 0.0%           | 5                | 163331           | 4740<br>4740            | 119913<br>115173 | 283244<br>278504   |
| 2029                                                               | 0.0%           | ŏ                | 0.0%           | 5                | 163331           | 4740                    | 110433           | 273764             |
| 2028                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 105693           | 269024             |
| 2027                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331<br>163331 | 4740<br>4740            | 100953<br>96213  | 264284<br>259544   |
| 2026                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 91473            | 259544             |
| 2024                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 86733            | 250064             |
| 2023                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331           | 4740                    | 81993            | 245324             |
| 2022                                                               | 0.0%           | 0                | 0.0%           | 5                | 163331<br>163331 | 4740<br>4740            | 77253<br>72513   | 240584<br>235844   |
| 2020                                                               | 10.0%          | 131400           | 20.0%          | 12               | 163331           | 4740                    | 67773            | 231104             |
| 2019                                                               | 10.0%          | 131400           | 20.0%          | 12               | 161579           | 4740                    | 63033            | 224612             |
| 2018<br>2017                                                       | 10.0%          | 131400<br>131400 | 20.0%          | 12<br>12         | 159827           | 4740<br>4740            | 58293<br>53553   | 218120<br>211628   |
| 2016                                                               | 10.0%          | 131400           | 20.0%          | 12               | 156323           | 4740                    | 48813            | 205136             |
| 2015                                                               | 40.0%          | 525600           | 55.0%          | 12               | 154571           | 1500                    | 44073            | 198644             |
| 2014                                                               | 40.0%          | 525600           | 55.0%          | 12               | 149753           | 1500                    | 42573            | 192326             |
| 2013<br>2012                                                       | 40.0%          | 525600           | 55.0%          | 12               | 140117           | 1500                    | 39573            | 179690             |
| 2011                                                               | 40.0%          | 525600           | 55.0%          | 12               | 135299           | 1500                    | 38073            | 173372             |
| 2010                                                               | 40.0%          | 525600           | 55.0%          | 12               | 130481<br>125663 | 1500<br>35073           | 36573            | 167054             |
| 2009                                                               | 19.1%          | 251130           | 33.6%<br>35.1% | 4                | 125663           | 35073                   | 35073            | 160736             |
| 2000                                                               | 29.4%          |                  | 49.3%          | 11               | 119643           | 26656                   |                  |                    |
| 2006                                                               | 24.7%          |                  | 53.6%          | 9                | 115322           | 25904                   |                  |                    |
| 2005                                                               | 38.7%<br>44.8% |                  | 59.0%<br>59.2% | 14               | 110627           | 23204<br>22076          |                  |                    |
| 2004                                                               | 44.6%          |                  | 60.2%          | 12               | 105455           | 20922                   |                  |                    |
| 2002                                                               | 58.6%          |                  | 65.3%          | 15               | 94998            | 19622                   |                  |                    |
| 2001                                                               | 42.8%<br>13.0% |                  | 59.8%<br>26.5% | 11               | 89282<br>84043   | 18468<br>17314          |                  |                    |
| 1999                                                               | 26.0%          |                  | 59.2%          | 6                | 81726            | 16159                   |                  |                    |
| 1998                                                               | 22.6%          |                  | 28.3%          | 4                | 76541            | 15005                   |                  |                    |
| 1997                                                               | 33.6%          |                  | 49.3%          | 10               | 74066            | 13851                   |                  |                    |
| 1996<br>1995                                                       | 28.6%<br>30.1% |                  | 42.1%          | 9<br>20          | 69745<br>66058   | 12697<br>11542          |                  |                    |
| 1995                                                               | 18.3%          |                  | 34.0%          | 20               | 62436            | 10388                   |                  |                    |
| 1993                                                               | 35.0%          |                  | 55.1%          | 13               | 59461            | 9234                    |                  |                    |
| 1992<br>1991                                                       | 42.8%<br>28.2% |                  | 73.3%<br>44.8% | 12<br>8          | 54633<br>48216   | 8080<br>6925            |                  |                    |
| 1991                                                               | 39.5%          |                  | 52.3%          | 12               | 48216            | 5771                    |                  |                    |
| 1989                                                               | 56.5%          |                  | 74.7%          | 15               | 39717            | 4617                    |                  |                    |
| 1988                                                               | 39.9%          |                  | 52.8%          | 12               | 33174            | 3463                    |                  |                    |
| 1987<br>1986                                                       | 61.8%<br>14.6% |                  | 81.6%<br>19.2% | 16<br>8          | 28552<br>21402   | 2308<br>1154            |                  |                    |
| 1985                                                               | 56.0%          |                  | 73.9%          | 15               | 19716            |                         |                  |                    |
| 1984                                                               | 29.6%          |                  | 39.1%          | 10               | 13240            |                         |                  |                    |
| 1983<br>1982                                                       | 11.5%          |                  | 15.2%          | 8                | 9814<br>8481     |                         |                  |                    |
| 1981                                                               | 20.8%          |                  | 27.5%          | 9                | 6028             |                         |                  |                    |
| 1980                                                               | 31.1%          |                  | 41.0%          | 11               | 3623             |                         |                  |                    |
| 1979<br>1978                                                       | 0.2%           |                  | 0.3%           | 6                | 29               |                         |                  |                    |
| 1978<br>1977                                                       | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1976                                                               | 0.0%           |                  | 0.0%           |                  | ŏ                |                         |                  |                    |
| 1975                                                               | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1974<br>1973                                                       | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1973                                                               | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1971                                                               | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1970<br>1969                                                       | 0.0%           |                  | 0.0%           |                  | 0                |                         |                  |                    |
| 1909                                                               |                |                  | 0.076          |                  | 1                |                         |                  | L                  |
|                                                                    |                |                  |                |                  |                  |                         |                  |                    |



# **EPRI Condition Assessment Method**





Source: EPRI GS6724

**Boiler Condition** 

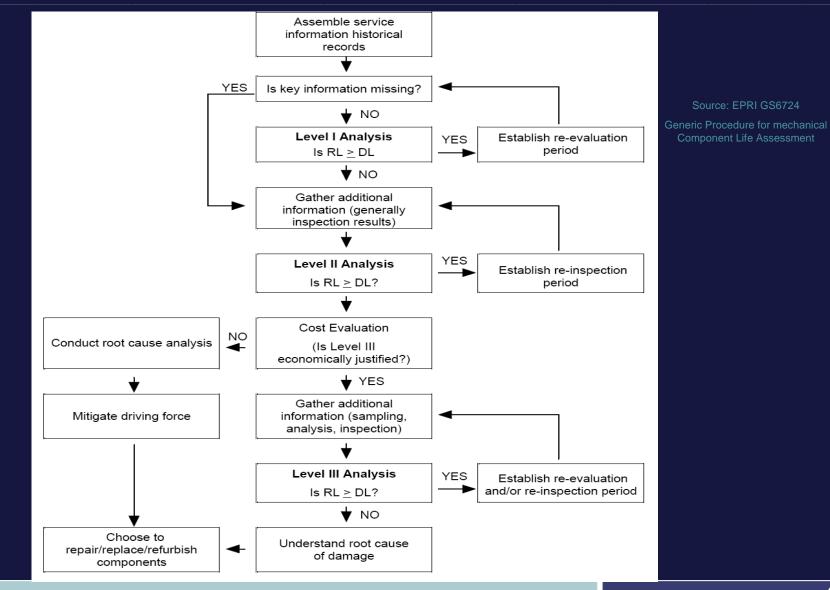
Assessment Guide

Total Number Run of Equipment Decisions








Level I Analysis. For the initial evaluation, or Level I, only design or overall service parameters need to be examined to ascertain if, on the basis of the most conservative considerations, the component has residual life greater than the anticipated extended-service period (or interval to the next inspection, whichever is less). Although it is possible to conduct this evaluation without reference to measurements or service information, the effectiveness of the assessment will be enormously improved by incorporating such information from the outset. Elementary service factors that should contain (but not be limited to) the following information:

- Unit running hours
- Number of hot, warm and cold starts and applicable ramp rates
- Unit load records
- Past failure history and failure analysis reports
- Maintenance activity
- Specifics of past component repairs or replacements
- Composition checks on materials of construction
- Dimensional checks
- Steam-temperature records
- Design parameters

### Level 1 Analyses

Source: EPRI GS6724 Data Requirements For the Multi-Level Component Life Assessment

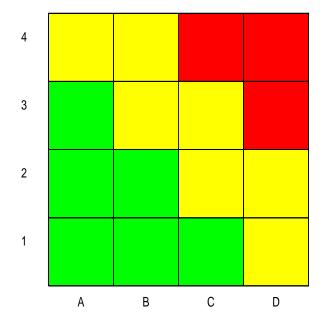






### **Technical Risk Assessment**

#### Likelihood of Failure Event:


- 1. Greater than 10 years
- 2. 5 to 10 years
- 3. 1 to 5 years
- 4. Immanent (< 1 year)

#### Consequence of Failure Event:

- A. Minor (\$10k-\$100k or derating/1 day outage)
- B. Significant (\$100k-\$1m or 2-14 days outage)
- C. Serious (\$1m-\$10m or 15-30 days outage)
- D. Major (>\$10m or >1 month outage)

#### Actions:

- Items that do not apply are not ranked
- Low Risk: Monitor long term (within 5 years)
- Medium Risk: Investigate and monitor short term. Take action where beneficial
- High Risk: Corrective action required short term





### Safety Risk Assessment

#### Likelihood of Safety Incident Event:

- 1. Improbable so that it can be assumed not to occur
- 2. Unlikely to occur during life of specific item/process
- 3. Will occur once during life of specific item/process
- 4. Likely to occur frequently

#### Consequence of Safety Incident Event:

- A. Minor will not result in injury, or illness
- B. Marginal may cause minor injury, or illness
- C. Critical may cause severe injury, or illness
- D. Catastrophic may cause death

#### Actions:

- Items that do not apply are not ranked;
- Low Risk: Monitor, take action where beneficial;
- Medium Risk: Investigate and monitor short term. Take action where beneficial; and
- High Risk: Unacceptable. Corrective action required short term

| 4 |   |   |   |   |
|---|---|---|---|---|
| 3 |   |   |   |   |
| 2 |   |   |   |   |
| 1 |   |   |   |   |
|   | А | В | С | D |



### **Priority Assessment**

Priority assigned to the "Recommended Actions", "Level 2 Inspections", and "Capital Enhancements".

Scale of "1" to "4". "1" is the highest priority - this activity should definitely be undertaken and where practical in or about the timing identified. "4" is the lowest priority - the item is low risk/impact and may be much more readily delayed or undertaken in some other fashion.

Ranking is subjective relative ranking by AMEC, meant to be an aid to Hydro in allocating resources and assessing trade-offs and program delays. Ranking takes into consideration a number of aspects such as:

1. The impact (likely/worst case) on achieving the end of life (EOL) goal, on plant operation health and safety, and on environmental and regulatory requirements;

2. The urgency of the need for action;

3. The degree of certainty of the requirement;

4. The experience at Holyrood and in the broader industry context;

5. The ability to mitigate or address the issue in other ways;

6.The timing of the recommended response;

7.The cost relative to others; and

8. The ability of existing and planned or ongoing actions to resolve in a timely and successful manner.

Priorities should be taken in the context of its recommended timing. An item can be a "1", but be scheduled for a later date if it is deemed that sufficient information exists to be confident of the minimal likely impact of the deferral (usually to tie in with a planned major activity such as an overhaul).



# **Mechanical Systems**

| Feature                                                                                                                                       | Level I                               | Level I Level II           |                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|---------------------|--|--|--|
| Failure History                                                                                                                               | Plant records                         | Plant records              | Plant records       |  |  |  |
| Dimensions                                                                                                                                    | Design or nominal Measured or nominal |                            | Measured            |  |  |  |
| Condition                                                                                                                                     | Records or nominal                    | Inspection                 | Detailed inspection |  |  |  |
| Temperature and pressure                                                                                                                      | Design or operational                 | Operational or<br>measured | Measured            |  |  |  |
| Stresses                                                                                                                                      | Design or operational                 | Simple calculation         | Refined analysis    |  |  |  |
| Material properties                                                                                                                           | Minimum Minimum                       |                            | Actual material     |  |  |  |
| Material samples required?                                                                                                                    | No No                                 |                            | Yes                 |  |  |  |
| More rigorous assessment       >         More accurate operation data required       >         More accurate estimate of equipment RL       > |                                       |                            |                     |  |  |  |

Source: EPRI GS6724 Data Requirements For the Multi-Level Component Life Assessment



### Level 1 Analyses

The information reviewed as part of the Level I process is to answer the following key questions for the component to be analyzed:

- Has operation exceeded the design parameters (typically temperature and/or pressure) for significant times or extents?
- Will the desired future service exceed pertinent design parameters (e.g. increased cycling duty)?
- Have the design philosophy or materials choices been shown to be unconservative since the unit went into operation?
- Has the failure history been excessive?
- Are steam temperature records inadequate or not available for assessment of those components that function at elevated temperatures?

If the answer to any of these key questions is 'yes', or if the component is found to have under Level I assessment less remaining life than the desired amount, the evaluation will have to move to a Level II assessment.

Source: EPRI GS6724 Data Requirements For the Multi-Level Component Life Assessment



### **Mechanical Systems Example – High Temp Steam Headers**

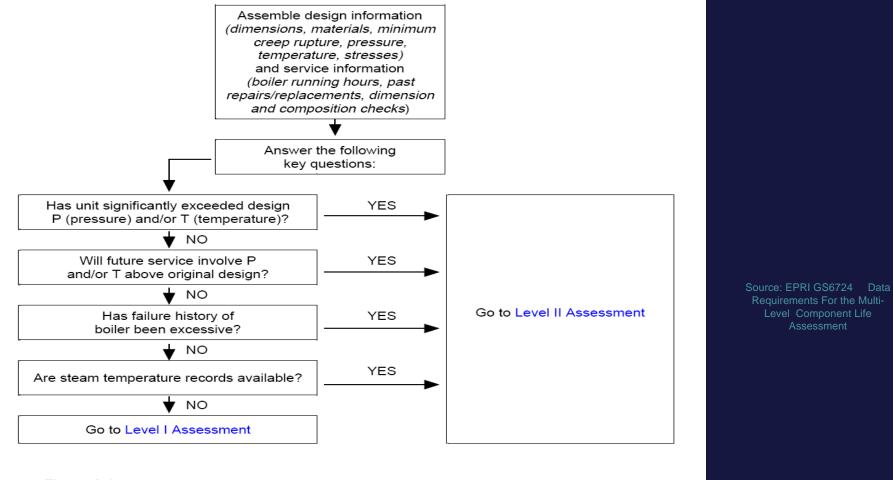



Figure 3-1 General Roadmap for High-Temperature Steam Headers



### **Condition Assessment, Life Extension – Levels of Detail**

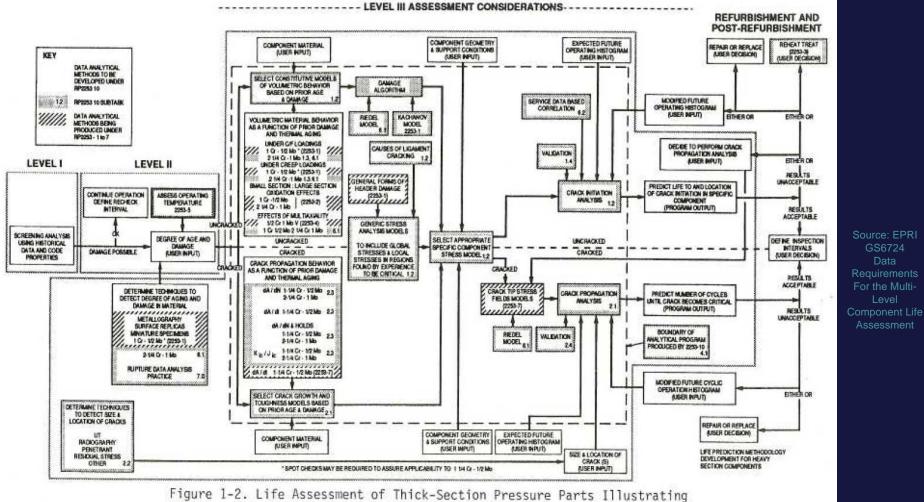
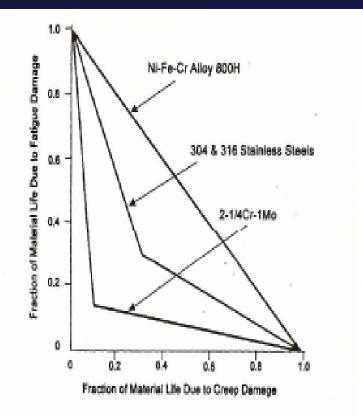



Figure 1-2. Life Assessment of Thick-Section Pressure Parts Illustrating Relative Detail of Various Portions of Multi-Level Assessments

55




# **Key Boiler Pressure Components and Damage Mechanisms**

| Component                                 | Creep | Fatigue | Corrosion | Erosion |
|-------------------------------------------|-------|---------|-----------|---------|
| Waterwall tubing                          | Х     | Х       | Х         | х       |
| Superheater (SH)/<br>reheater (RH) tubing | X     | X       | x         | х       |
| Economizer tubing                         |       | Х       | ×         | х       |
| Superheater headers                       | Х     | Х       | ×         |         |
| Reheater headers                          | Х     | Х       | Х         |         |
| Main steam piping                         | Х     | Х       |           |         |
| Hot reheat piping                         | Х     | Х       |           |         |
| Cold reheat piping                        |       | Х       | x         | х       |
| Economizer inlet<br>header                |       | X       | x         |         |
| Drums                                     |       | Х       | ×         |         |
| Downcomers                                |       | Х       | Х         |         |
| Waterwall headers                         |       | Х       | Х         |         |
| Attemperator                              | Х     | Х       |           |         |

Source: EPRI GS6724

Boiler Condition Assessment Guide









### **Materials Failure Modes**

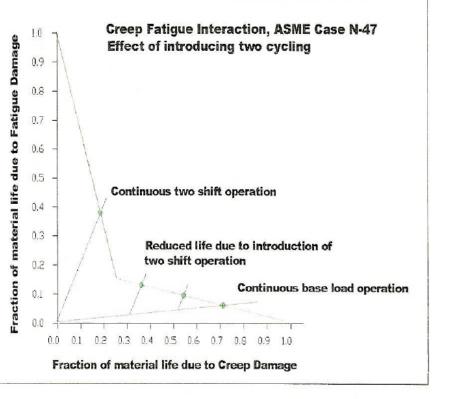



Figure 3-1 Demonstrates the interaction and consequences of creep and fatigue (based on ASME N-47) for a typical power plant steel (2.25Cr1Mo)



### Issues

- ID of key equipment included/excluded
- ID recent improvements/changes fuel, major mods, etc.
- Information Availability data room vs hunting
- Level of detail of investigation
- Vendor inputs and costs
- Current/planned station budgets and plans
- Timing of changes –likelihood %
- Staffing, OMA plans



### **NLH Provided Information**

- Criteria for operation & operating parameters
- Major Equipment to be considered
- Design and operating data e.g. temperatures, vibration data, cooling water and oil temperatures, etc. at typical load points
- Facility drawings as required
- Maintenance data for major equipment, especially last major maintenance outage. Details of known limitations, and operating concerns
- Details of major repairs made on major equipment



### **NLH Information**

- Station operating hrs and cold/warm/hot starts by unit and year
- Station operating hrs and cold/warm/hot starts by unit and month from Jan 2007 to present
- Major Station outages and associated reports (planned, major maintenance) since 2000 by unit (especially the last major outage)
- Major plant equipment and system changes (i.e. major fuel change, equipment change-out, major boiler surface replacement, steam turbine modifications, generator modifications) since in-service (particularly in last 10 years)



### **NLH Information**

- Major inspections (and associated reports) on key equipment and systems since 1997 - including timing of the inspections and scope
- Unit performance capacity, heat rate, availability since 2000
- Current budget and business plan information details
- Information where the actual operating conditions (temperature, pressure) exceeded the equipment design conditions: