Page 1 of 2

1	Q.	Losses related to the HVdc Labrador-Island Link are mentioned in Exhibit 43, pg. 33
2		of 37 (5%), Nalcor Submission July 6, 2011 Synopsis of 2010 Generation Expansion
3		Decision, Appendix C, pg. 3 of 9 (10%) and Exhibit 18, pg. 32 (7% & 8%). Please
4		provide the design capacity and energy losses for the proposed HVdc Labrador-
5		Island Link.
6		
7		
8	A.	As noted in response to MHI-Nalcor-119 a maximum loss value of 10% worst case
9		was chosen the determine the minimum acceptable operating voltage to the
10		Labrador – Island HVdc Link. An estimated average loss value rate of 5% has been
11		used for analysis purposes. Transmission losses will be evaluated further in
12		conjunction with conductor, converter and transmission optimization during
13		detailed engineering prior to Project Sanction.
14		
15		At Decision Gate 2 the Labrador – Island HVdc Link has the following ratings:
16		
17		 Operating voltage ±320 kV
18		Rated capacity at Muskrat Falls
19		o 450 MW per pole in bipole mode, 1406 A
20		o 900 MW per pole 10 minute monopolar mode – 2812 A
21		o 675 MW per pole continuous monopolar mode – 2109 A
22		Capacity losses
23		o Bipole mode
24		 84.85 MW winter (Ambient Labrador -13 °C, Island -1 °C)
25		 92.1 MW summer (Ambient Labrador 21 °C, Island 23 °C)
26		o 10 Minute monopolar mode
27		 250.4 MW winter (Ambient Labrador -13 °C, Island -1 °C)

Page 2 of 2

1	 272.7 MW summer (Ambient Labrador 21 °C, Island 23 °C)
2	 Continuous monopolar mode – earth return
3	■ 132 MW winter (Ambient Labrador -13 °C, Island -1 °C)
4	■ 144.4 MW summer (Ambient Labrador 21 °C, Island 23 °C)
5	Energy losses are usage dependent. Assuming a design capacity factor of
6	95%, the system would have an energy loss rate of approximately 9.3%. The
7	forecasted capacity factor for the line is 62% (4.9 TWh / (900 MW*8760 hr /
8	1,000,000 MW/TW), and losses would be correspondingly lower.