Q. Please provide a copy of the analysis that was carried out in June and July of 2010 1 2 which confirmed that the 900 MW HVDC link would require a minimum operating voltage of 320 kV as referenced in Exhibit 30, Section 4, paragraph 4. 3 4 5 6 A. For analysis the maximum HVdc system losses has been set at 10% (worst case) in 7 order to prepare a load flow model of the scheme. It must be noted that a detailed 8 conductor and voltage optimization will be required in final design. For analysis purposes it is assumed that the converter stations will account for 2% of the system 9 losses. At this point in time the "largest" standard conductor in the Canadian Alcan 10 catalog is selected. The conductor is a 55.88 mm, 91 strand, 3640 kcmil, A1 (ASC) 11 conductor with Rdc at 20 C = 0.01568 Ω /km and a rated tensile strength of 304 kN. 12 13 14 There is a total of 1038 km of overhead line between Muskrat Falls and Soldiers 15 Pond. The submarine cable across the Strait of Belle Isle is assume to be an 1800 mm² copper cable with Rdc at 20 C = 0.0098 Ω /km. The cable route is estimated to 16 17 be 30 km in length. 18 19 The total resistance per pole equals: 20 Rdc at 20 C = $(1038 * 0.01568) + (30 * 0.0098) = 16.5698 \Omega/pole$ 21 22 At 450 MW per pole the pole losses, excluding the converter station losses, should be less than or equal to 36 MW. The pole current is calculated as: 23 Ploss = I^2 Rdc at 20° C 24 25 36 MW = I2 (16.5698 Ω /pole) 26 I = 1473.9 Adc/pole 27

MHI-Nalcor-62 Muskrat Falls Review

Page 2 of 2

1	To send 450 MW/pole assuming a 1474 A pole current, the sending end voltage is
2	calculated as:
3	
4	P = I * V
5	450 MW = 1474 Adc * V
6	V = 305.2 kV
7	
8	The resultant nominal 900 MW HVdc system ratings are:
9	
10	● ②± 320 kV;
11	• ②pole current of 1406 A; and
12	• losses of 41.8 MW/pole or 83.6 MW/bipole – 816.4 MW receiving end.