

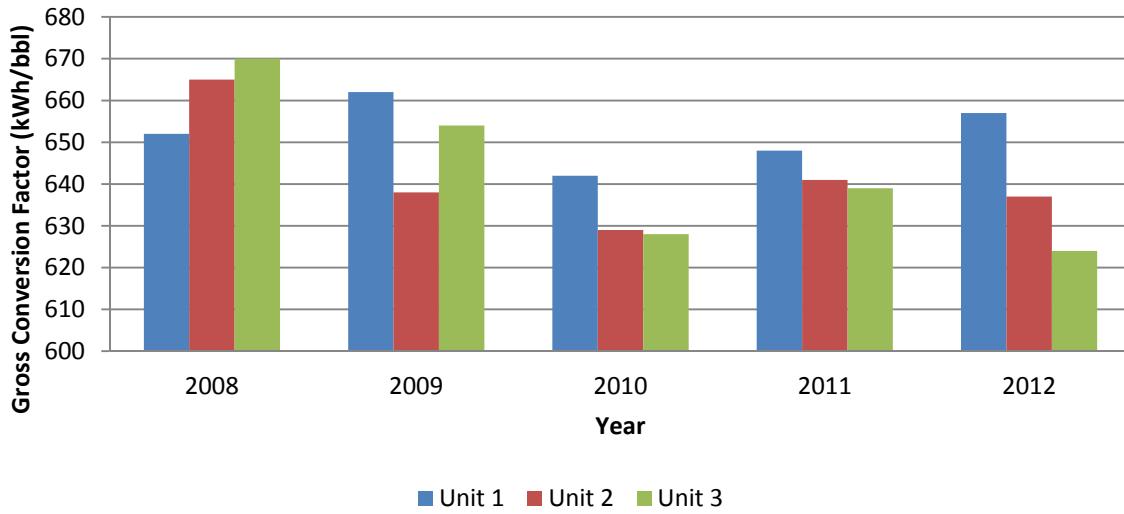
1 Q. **Reference: Page 2.46.**

2 Re: Holyrood efficiency per page 2.46. Provide data in graphical and tabular form
3 showing actual operating efficiencies of each unit at Holyrood for the last 5 years,
4 as well as all activities undertaken in the last 5 years to improve the efficiency of
5 generation at Holyrood.

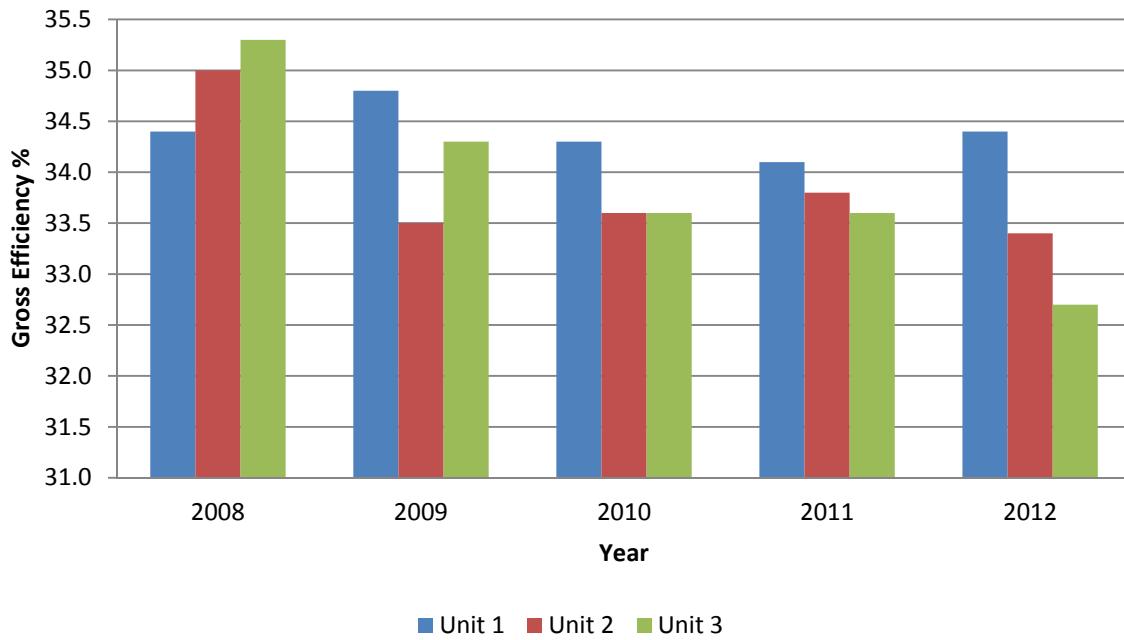
6

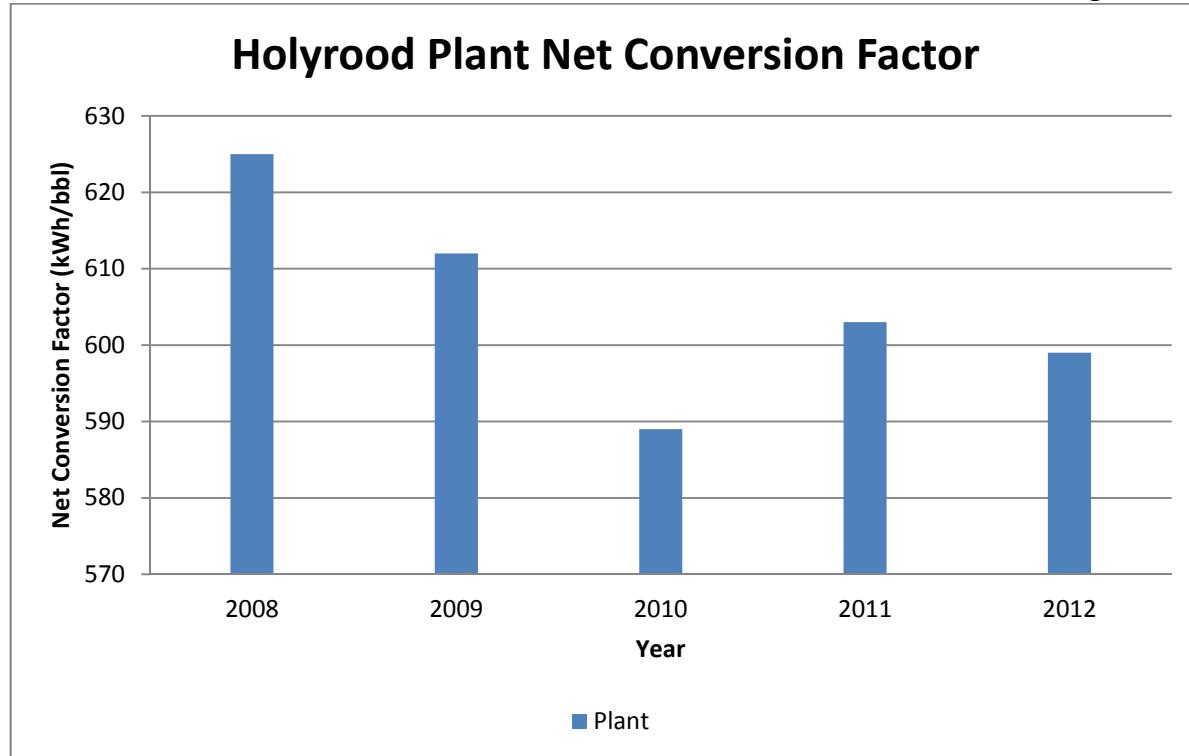
7

8 A. The Holyrood operating efficiencies and conversion factors of each unit and
9 conversion factor of the overall plant, for the last five years are as follows:


Efficiency (%) and Conversion Factor (kWh/bbl)							
Year	Unit 1		Unit 2		Unit 3		Plant
	Gross Efficiency	Gross Conversion Factor	Gross Efficiency	Gross Conversion Factor	Gross Efficiency	Gross Conversion Factor	Net Conversion Factor
2008	34.4%	652	35.0%	665	35.3%	670	625
2009	34.8%	662	33.5%	638	34.3%	654	612
2010	34.3%	642	33.6%	629	33.6%	628	589
2011	34.1%	648	33.8%	641	33.6%	639	603
2012	34.4%	657	33.4%	637	32.7%	624	599

10 Note that individual unit quantities shown above are gross (excluding the impact of
11 station service), as station service is measured and tracked on a plant basis. The
12 overall plant conversion factor is indicated on a net basis. The efficiency and
13 conversion factor of a unit and the overall plant are largely influenced by the level
14 of loading experienced by the units.


15


16 The following charts summarize the operating efficiency and conversion factor data
17 provided above.

Holyrood Unit Gross Conversion Factor

Holyrood Unit Gross Efficiencies

1 The following activities are performed on a routine or annual basis, and are
2 designed to maintain efficiencies.
3
4 • Environmental management programs – efficiency driven initiatives for
5 emissions reduction.
6 • Heat exchanger maintenance and cleaning.
7 • Equipment overhaul programs (e.g. annual boiler overhauls).
8 • Maintaining major equipment efficiencies (e.g. boiler feed pumps).
9 • Routine furnace and air heater cleaning.
10 • EtaPRO performance monitoring and efficient use of plant systems.
11 • Non-destructive examination program enhancements.

1 The activities and initiatives undertaken in the last five years to improve unit and
2 overall plant efficiency are:

3 **2008**

4 • Installation of a variable speed drive air compressor to reduce auxiliary power
5 consumption.

6 **2009**

7 • A study of the feasibility of installing an intelligent soot-blowing system to only
8 use steam to clean boiler components when fouling reaches inefficient levels.

9 **2010**

10 • A study of the feasibility of installing variable speed drives on boiler feed pumps
11 and forced draft fans.

12 • Submission of a capital budget proposal to upgrade forced draft fan ductwork to
13 reduce air flow restriction, hence reducing electrical load on the fans.

14 **2011**

15 • A review of turbine condenser operation and maintenance activities with a view
16 to increasing unit efficiency for all three units.

17 • The installation of a new forced draft fan ductwork.

18 **2012**

19 • Performance of a gap analysis on condenser operation and maintenance.

20 • Submission of a capital budget proposal to install variable speed drives on the
21 six 1500 hp forced draft fan motors.

22 • Implementation of an improved and more timely method for conversion of Unit
23 3 to and from synchronous condenser operation thus reducing the time that
24 Units 1 and 2 have to be generating at low inefficient load levels for voltage
25 support.

26 • Installation of new energy efficient heat tracing on fuel oil lines.

1 • Performance of a lighting study to establish the cost of upgrading to energy
2 efficient lighting throughout the facility, including the use of photo cells and
3 motion sensors.

4 **2013**

5 • Currently performing design work to install variable speed drives on the six
6 forced draft fans.

7 • Implementing recommendations of the 2012 condenser gap analysis.

8 • Completed installation of new energy efficient heat tracing on fuel oil lines.