Lookout Brook Hydro Plant Refurbishment (Clustered), p. 4 of 96, \$2	Lookout Brook Hydro F	'lant Refurbishment	(Clustered), p.	4 of 96, \$2,155,000
--	-----------------------	---------------------	-----------------	----------------------

1 2 3

4

5

Q. In the report provided in Tab 1.2 Lookout Brook Hydro Plant Refurbishment, page 7, NP mentions "arc flash zone of influence". If NP has investigated the extent of arc flash exposure in its facilities please provide the report that has been prepared. If not, please provide reasons why this investigation has not been undertaken.

6 7 8

A. Newfoundland Power has not prepared a formal report on arc flash exposure for all of its facilities.

9 10

Newfoundland Power has investigated the extent of arc flash exposure and completed arc flash hazard studies for all of its substation and hydro plant high voltage switchgear.

Such studies are completed to current industry standards under the supervision of qualified professional engineers.

15

Attachment A provides the arc flash study for Lookout Brook Plant. The *arc flash zone* of influence for the switchgear at Lookout Brook Plant is 633 inches or 16 metres.

Lookout Brook Arc Flash Hazard Study

ELECTRICAL ENGINEERING

ARC FLASH HAZARD STUDY


Company Area:	Stephenville	
Switchgear Included:	LBK 2.4kV	
Prepared by:	D. Jones	Date:
	\$30,000 m	6KOL COULDING
		G.R. SPURRELL OF SIGNATURE 2008-07-08-5

REASON FOR ARC FLASH HAZARD STUDY

Flash Hazard calculations to be done for	
study revisited after 403L conversion from 33	kV to 66kV.

POINTS TO NOTE

PPE level cla	ss 3 at 36 inches (racking ou	breaker).	
:			

Rev 1.0

3/5/2008

Recheck of LBK-T1 fuse size;

Steps to select power transformer fuse:

- 1. Select voltage rating.
- 2. Check interrupting rating.
- 3. Select ampere rating and speed.
- 4. Check co-ordination with loadside device.
- 5. Check co-ordination with source side device.

HV system voltage (kV)	66.00
HV system voltage (KV)	00.00

Voltage rating selected should always be in excess of the system phase-to-phase voltage.

Recall that in all likelihood one of any two fuses carrying fault current will melt before the other. Thus a full phase-to-phase recovery voltage will appear across the blown fuse.

Fuse manufacturer	S&C	
Select holder type		
Select voltage rating		66.00

LLL maximum fault level at fuse	171.00
Angle 3-phase.	-65.70
X/R ratio for above.	-2.21
Assymetry factor based on X/R ratio	1.2
(See graph window)	
Assymetrical L3 fault level	205.2
Phase-to-ground maximum fault level at	

Phase-to-ground maximum fault level at	
fuse location.	124.00
Angle- phase-to-ground.	-71.2

X/R ratio for above.	-2.94
Assymetry factor based on X/R ratio	1.3
Assymetrical LG fault level	161.2
S & C 66.00 kV asymmetrical interrupting rating (MVA)	1673.00
S & C 66.00 kV symmetrical interrupting rating (MVA)	1046.00

(If the rating is higher than the fault levels above, the selected fuse can interrupt these faults. A lower X/R ratio for the fault levels above will allow a higher safety margin.)

Fusing ratio = Fuse rating / Xfmr self-cooled MVA rating

7.50
65.6
10.00
87.5
80
E
1.22
18.29
183%

(A fuse will normally carry approximately 2X its current rating before it will start to melt.)

Impedance limited secondary faults may reduce the short circuit current to the order of 500-1000 % of the transformer rated full-load current. Overcurrents of this magnitude definitely accelerate transformer aging and should be cleared promptly. This basically requires a low fusing ratio. S&C recommends that fusing ratios should be less than 1.5 and no greater than 2.0.

LOCATION	Lookout Brook	
Device	LBK-T1-FD	
Fuse Manufacturer	S&C	
Manufacturer's designation	SMD-1A	
kV rating	69	
Size	80E	
Fuse speed rating	Standard	
Holder type	SMD-1A	
Manufacturer's catalog number		
Curve numbers	153-1, 153-1-6-1	
COMMENTS:		
LOCATION	Lookout Brook	
Relay type	MCGG22	
System kV	66.00	
CT Ratio:1	20	(100:5)
CT connection	Y	
Rated current of the CT secondary (In)	5	
DEVICE>	LBK-T1-51N	
Relay range (increments of 0.05)	0.05-2.4	
Range in secondary amps (Is) (relay range x In)	0.25-12	
Pickup setting (Is/In)	>	0.2
Pickup setting, sec. amps (Is) (pickup x In)	1.00	
Time multiplier (0.025-1)(increments of 0.025)	>	0.30
MVA setting	2.29	
Operating Curve	>	Very Inverse
DEVICE>	LBK-T1-50NLV	
Relay range (increments of 1)	1-31	
Range in secondary amps (relay range x ls)	(5-155) x ls	
Pickup setting	>	N/A
Pickup setting, sec. amps (pickup x ls)	0.00	
MVA setting	0.00	
-		

Change the Pickup setting from 0.4 (2.3 MVA @ 33KV) to 0..2 (2.3 MVA @ 66 KV).

Convert 403L to 66 KV

STG-403L-P143

Phase Settings

I>1 Function	IEC E Inverse
I>1 Direction	Non-Directional
I>1 Current	Set 111.0 A
I>1 TMS	100.0e-3
I>1 tRESET	<u>0 s</u>
I>2 Function	<u>Disabled</u>
I>3 Status	<u>Enabled</u>
I>3 Direction	Non-Directional
I>3 Current Set	795.0 A
I>3 Time Delay	Os Jong Cys
I>4 Status	Disabled
I> Blocking	001111
I> Char Angle	45.00 deg
V CONTROLLED	O/C
VCO Status	Disabled

- 1. Change I>1 Function from IEC v Inverse to IEC E Inverse.
- 2. Change I>1 TMS from 0.350 to 0.100
- 3. Change I>1 Current from 201 amps to 111 amps.
- 4. Change I>3 Current set from 1359 amps to 795 amps.

FROM APPROVED 4036 CONVERSION STUDY.

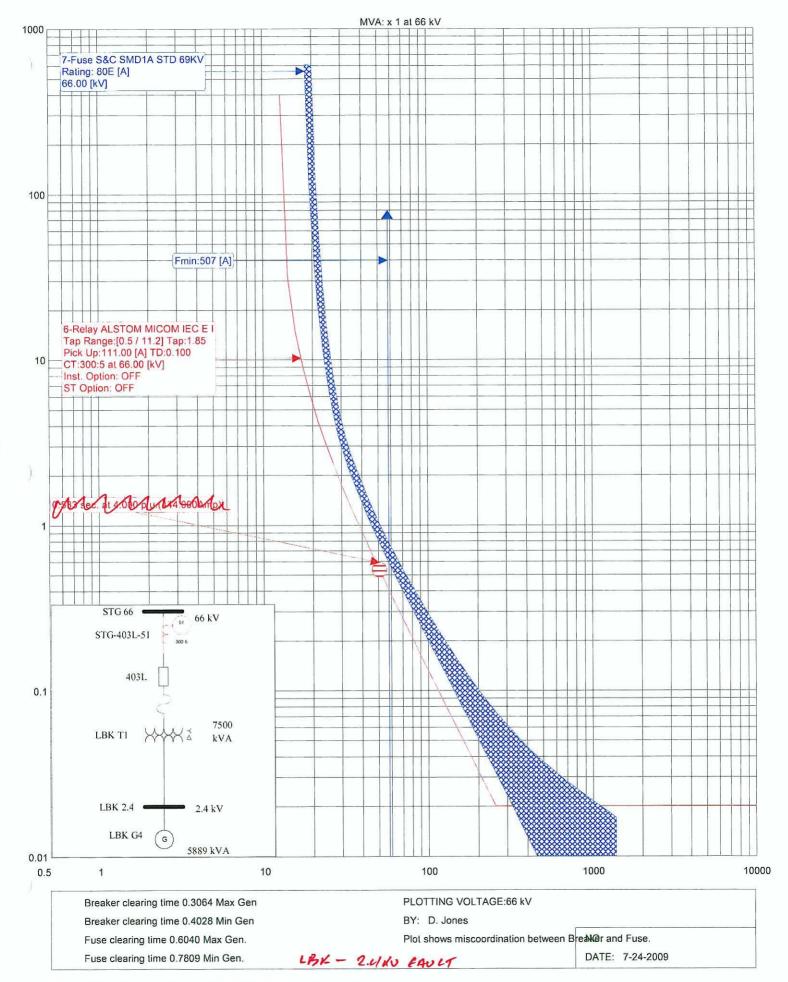
Maximum Generation Fault LBK 2.4 kV

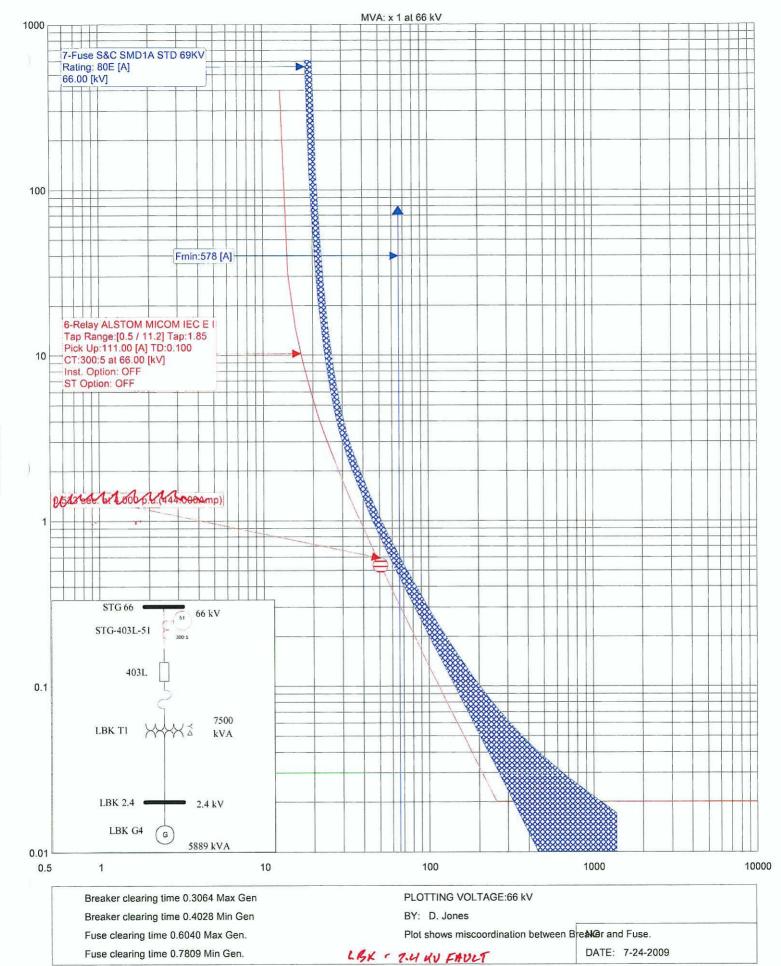
Faulted Bus -> (I) report

Faulted Bus	Bus Id	Туре	Prefault kV	Fault type	Fault S [MVA]	la [A]	la [deg]	Ib [A]	Ib [deg]	Ic [A]	Ic [deg]	In [A]	In [deg]
LBK 02	LBK 02		2.4	LLL	100	23994.75	-82.9135	23994.75	157.0865	23994.75	37.0865	0	0
First Ring	Contributi	ons											
LBK 02	LBK G1	Generator	2.4	LLL	34	8191.156	-90	8191.156	150	8191.156	30	0	0
LBK 02	LBK T1	Xmer	2.4	LLL	66	15898.69	-79.2697	15898.69	160.7303	15898.69	40.7303	0	0

Global Current Report

Faulted	H MUSICIPAL					Contract to		REPORTE			the ATE	
Bus	Branch id	Туре	Fault type	Branch Side	Ia [A]	la [deg]	Ib [A]	Ib [deg]	Ic [A]	Ic [deg]	In [A]	In [deg]
LBK 02	403L(B)	Line	LLL	ROB 403L-D3	578	130.7353	578	10.7353	578	-109.265	0	0
LBK 02	403L(B)	Line	LLL	LBK T1-A	578	-49.2647	578	-169.265	578	70.7353	0	0


Minimum Generation Fault LBK 2.4 kV. LBK plant on.


Faulted Bus -> (I) report

Faulted					Fault S								
Bus	Bus Id	Туре	Prefault kV	Fault type	[MVA]	la [A]	la [deg]	Ib [A]	Ib [deg]	Ic [A]	Ic [deg]	In [A]	In [deg]
LBK 02	LBK 02		2.4	LLL	92	22066.52	-83.7537	22066.52	156.2463	22066.52	36.2463	0	0
First Ring	Contribution	ons											
LBK 02	LBK T1	Xmer	2.4	LLL	58	13952.89	-80.092	13952.89	159.908	13952.89	39.908	0	0
LBK 02	LBK G1	Generator	2.4	LLL	34	8191.156	-90	8191.156	150	8191.156	30	0	0

Global Current Report

Faulted Bus	Branch id	Туре	Fault type	Branch Side	la [A]	la [deg]	lb [A]	Ib [deg]	Ic [A]	Ic [deg]	In [A]	In [deg]
LBK 02	403L(B)	Line	LLL	ROB 403L-D3	507.2	129.913	507.2	9.913	507.2	-110.087	0	0
LBK 02	403L(B)	Line	LLL	LBK T1-A	507.2	-50.087	507.2	-170.087	507.2	69.913	0	0

Arc Flash Hazard LBK 2.4 kV with 80E fuses installed on LBK-T1 transformer. 403L converted to 66 kV IEEE standard

:			Fault		CT Plus	Working	Flash Hazard					
Faulted Bus	Generation	Fault	Current	СТ	Fuses	Distance	Boundry	cal / cm2	PPE Level	L.A.B.	R.A.B.	P.A.B.
LBK 2.4	Max	LLL	23995	0.6040	0.6040	16"	533	37.24	4	60"	26"	7"
LBK 2.4	Min	LLL	22067	0.7809	0.7809	16"	633	44.06	>4	60"	26"	7"

			Fault		CT Plus	Working	Flash Hazard					
Faulted Bus	Generation	Fault	Current	СТ	Fuses	Distance	Boundry	cal / cm2	PPE Level	L.A.B.	R.A.B.	P.A.B.
LBK 2.4	Max	LLL	23995	0.6040	0.6040	36"	533	16.91	3	60"	26"	7"
LBK 2.4	Min	LLL	22067	0.7809	0.7809	36"	633	20.00	3	60"	26"	7"

*Arc Flash Calculated for Switchgear and fixed conductor.
Software won't supply Arc Flash results for clearing times over one second.

L.A.B. Limited Approach BoundryR.A.B. Restricted Approach BoundryP.A.B. Prohibited Approach Boundry

Miscoordination between STG-403L-B and LBK-T1 fuses for 2.4 kV bus fault. Used fuse Clearing Time for Arc Flash Study as this would be worst case.

Equipment Class Switchgear

Gap between Conductors 104 mm.

Grounding Type Grounded

Working Distance 406.4 mm.

Available 3 Phase Bolted Current 23.995 kA

System Voltage 2400 Volt

☑ I agree to be bound with Terms & Conditions of this website.

Calculate Boundaries

Equipment Type: Switchgear

Typical Gap bw. Electrodes: 104mm.

Grounding: Grounded

Work Distance: 406.4 mm.

Arc Duration @ Predicted Arcing Current: 0.6040 sec.

Arc Duration @ 15% Reduced Arc Current: 0.6040 sec.

Available 3Ø Bolted Current: 23.995 kA

Predicted 3Ø Arcing Current: 22940 A

System Voltage L-L: 2400 Volt

Calculation Mode	Incident Energy Exposure (cal/cm ²)	Flash Protection Boundary (inches)	Level of PPE
@ 100% Arcing Current	37.24	533	4
@ 85% Arcing Current	31.24	445	4

Equipment Class Switchgear

Gap between Conductors 104 mm.

Grounding Type Grounded

Working Distance 406.4 mm.

Available 3 Phase Bolted Current 22.067 kA

System Voltage 2400 Volt

✓ I agree to be bound with Terms & Conditions of this website.

Calculate Boundaries

Equipment Type: Switchgear

Typical Gap bw. Electrodes: 104mm.

Grounding: Grounded

Work Distance: 406.4 mm.

Arc Duration @ Predicted Arcing Current: 0.7809 sec.

Arc Duration @ 15% Reduced Arc Current: 0.7809 sec.

Available 3Ø Bolted Current: 22.067 kA

Predicted 3Ø Arcing Current: 21130 A

System Voltage L-L: 2400 Volt

Calculation Mode	Incident Energy Exposure (cal/cm ²)	Flash Protection Boundary (inches)	Level of PPE
@ 100% Arcing Current	44.06	633	N/A
@ 85% Arcing Current	36.96	528	4

39.54 inches = 16, meters

Equipment Class Switchgear

Gap between Conductors 104 mm.

Grounding Type Grounded

Working Distance 914.4 mm.

Available 3 Phase Bolted Current 23.995 kA

System Voltage 2400 Volt

☑ I agree to be bound with Terms & Conditions of this website.

Calculate Boundaries

Equipment Type: Switchgear

Typical Gap bw. Electrodes: 104mm.

Grounding: Grounded

Work Distance: 914.4 mm.

Arc Duration @ Predicted Arcing Current: 0.6040 sec.

Arc Duration @ 15% Reduced Arc Current: 0.6040 sec.

Available 3Ø Bolted Current: 23.995 kA

Predicted 3Ø Arcing Current: 22940 A

System Voltage L-L: 2400 Volt

<u>Calculation</u> <u>Mode</u>	Incident Energy Exposure (cal/cm ²)	Protection Boundary (inches)	Level of PPE
@ 100% Arcing Current	16.91	533	3
@ 85% Arcing Current	14.19	445	3

Equipment Class Switchgear

Gap between Conductors 104 mm.

Grounding Type Grounded

Working Distance 914.4 mm.

Available 3 Phase Bolted Current 22.067 kA

System Voltage 2400 Volt

☑ I agree to be bound with Terms & Conditions of this website.

Calculate Boundaries

Equipment Type: Switchgear

Typical Gap bw. Electrodes: 104mm.

Grounding: Grounded

Work Distance: 914.4 mm.

Arc Duration @ Predicted Arcing Current: 0.7809 sec.

Arc Duration @ 15% Reduced Arc Current: 0.7809 sec.

Available 3Ø Bolted Current: 22.067 kA

Predicted 3Ø Arcing Current: 21130 A

System Voltage L-L: 2400 Volt

<u>Calculation</u> <u>Mode</u>	Incident Energy Exposure (cal/cm ²)	Protection Boundary (inches)	Level of PPE
@ 100% Arcing Current	20.00	633	3
@ 85% Arcing Current	16.78	528	3

WARNING

Arc Flash and Shock Hazard Appropriate PPE Required

16.08 Flash Hazard Boundary

44.1 cal / cm2 Flash Hazard at 406 mm

>4 PPE Level De-energize Switchgear or Change

Protection Settings to Reduce Hazard Category

Inside Any Switchgear Cubicle Compartment

2400 VAC Shock Hazard

Equipment Name LBK 2.4kV

WARNING

Arc Flash and Shock Hazard Appropriate PPE Required

3 m Flash Hazard Boundary

cal / cm2 Flash Hazard at 914 mm

2 PPE Level Flash Suit or FR Work Shirt With Either

Flash Pants or FR Coverall & Denim Pants Hard Hat; Safety Glasses; Arc Rated Face Shield; Hearing, Hand & Foot Protection

Breaker Operation With Cubicle Door Fully Secured

2400 VAC Shock Hazard

Equipment Name LBK 2.4kV

3

WARNING

Arc Flash and Shock Hazard Appropriate PPE Required

16.08 Flash Hazard Boundary

20.0 cal / cm2 Flash Hazard at 914 mm

PPE Level Flash Suit or Insulated Pants and Jacket;

Hard Hat; Safety Glasses; Flash Suit Hood; Hearing, Hand & Foot Protection

Breaker Operation - Open or Close Breaker Operation - Racking

2400 VAC Shock Hazard

Equipment Name LBK 2.4kV