Page 1 of 2

1	Q.	Tab 27; Volume II: Implement Terminal Station Flood Mitigation – Springdale
2		Hydro states on page 2 that "the installation will be designed to prevent flooding of
3		the terminal station during a 1 in 100 year rainfall event."
4		
5		How do the referenced rainfall events in 2006 and 2015 compare to the 1 in 100
6		year criteria?
7		
8		
9	A.	Flooding of the Springdale Terminal Station occurred on April 18, 2006, and April
10		29, 2015. Both events were the result of increasing water levels in nearby Davis
11		Brook.
12		
13		As there is no flow data available for Davis Brook, a Regional Flood Frequency
14		Analysis was completed to estimate the flow rates during the most recent flood
15		event. To complete this exercise, the peak water levels of the 2015 flood were used
16		for hydraulic model calibration purposes.
17		
18		A nearby hydrometric station was used to replicate the flows in Davis Brook. To
19		ensure that this station was representative of the flow regime for Davis Brook, the
20		selected station contained similar physiographic parameters, had a period of record
21		greater than or equal to 18 years, and was an active station during the storm event
22		of interest; April 2015.
23		
24		Hourly flow rates obtained from this station were correlated, using drainage area,
25		to Davis Brook in order to derive the calibration inflow sequence for the April 2015
26		storm event. These flows were then compared to the Intensity-Duration-Frequency
27		return period rainfall amounts for a 24 hour period.

Page 2 of 2

1	Based on the analysis, the flows at Davis Brook, during the 2015 storm event, were
2	estimated to be 38.8 m^3 /s. This equates to a 1 in 20 year event. Using the
3	representative hydrometric station, a 1 in 20 year event will result in a 24 hour
4	rainfall accumulation of approximately 73.4 mm and an average rainfall intensity of
5	3.1 mm/hr.
6	
7	Similarly, a theoretical flow was calculated for a 1 in 100 year rainfall. For an event
8	of this magnitude, the flow rate is estimated to be 50.7 m ³ /s. This event would
9	result in a 24 hour rainfall accumulation of 91.3 mm, with an average rainfall
10	intensity of 3.8 mm/hr.
11	
12	Having experienced two previous flood events at the Springdale Terminal Station,
13	Hydro deemed it prudent to complete the retention berm design for the higher
14	intensity rainfall event. For this reason, the 1 in 100 year return period was
15	selected as the basis of design for the retention berms.