1	Q.	Reference: Improve Boiler Load Capacity – Units 1, 2 and 3, Holyrood, June 1,
2		2018, Appendix A, B&W Engineering Study Report, Page A14.
3		
4		"The current fuel oil atomizing temperature (approx. 187 F) is lower than required
5		for optimal combustion. It is recommended to increase firing temperature to 220-
6		225 F to ensure proper combustion with the current range of oil viscosities."
7		
8		Has operating at these lower temperatures contributed to the abnormal ash
9		deposits encountered in recent years and does Hydro intend to follow the
10		recommendation to operate at the higher temperature?
11		
12		
13	Α.	Of the three units, only Unit 3 has had this minor differential in fuel oil atomizing
14		temperature, yet the hard ash exists on all units. Therefore, the implication of this
15		minor difference is not deemed material to the ash build up. The resulting change in
16		Unit 3 atomization temperature is about 5 degrees Celsius, and the current
17		temperature has been in use for 15 years. Hydro receives advice every season on
18		improving its operating parameters and intends to adjust the operating
19		temperature this season.
20		
21		For information, the referred statement from the B&W report has been removed in
22		Revision 3 of the report Performance Study Unit Capacity Limitations, which was
23		issued on June 8, 2018. This revision to the report was made to address a
24		misunderstanding regarding the atomization temperatures maintained at Holyrood.
25		The new statement, on page 14 of 90, is as follows:
26		"The current fuel oil atomizing temperature (approx. 187 F) is at
27		times lower than required for optimal combustion. It is

1	recommended to increase firing temperature to achieve target oil
2	viscosities as discussed in Section 6.1."
3	
4	The updated report is attached as NP-NLH-005, Attachment 1.

Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 1 of 90

Thermal Power Department

Technical Services

Engineering Study Report

Customer:	Newfoundland and Labrador Hydro (NLH)
	Holyrood Units #1, #2, #3

Performance Study			
Unit Capacity Limitations			
B&W Project 312C			
Rev 03, June 8 / 2018			
Brian Jordan P. Eng Project			
Engineer			
Malcolm Mackenzie, P. Eng.			

© 2018 THE BABCOCK & WILCOX PGG CANADA. ALL RIGHTS RESERVED.

This document is the property of The Babcock & Wilcox PGG Canada (B&W) and is "CONFIDENTIAL AND PROPRIETARY" to B&W. Recipient and/or its representatives have, by receiving same, agreed to maintain its confidentiality and shall not reproduce, copy, disclose or disseminate the contents, in whole or in part, to any person or entity other than the Recipient and/or Recipient's representatives without the prior written consent of B&W.

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 2 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

TABLE OF CONTENTS

LIST OF F	GURES	4
LIST OF T	ABLES	5
1 INTRO	DUCTION	7
2 EXEC	UTIVE SUMMARY	8
2.1 UN	ITS #1 AND #2	9
2.2 Un	IT #31	2
2.3 Fu	EL RELATED ISSUES (COMMON UNITS 1,2,3)14	4
3 CONC	LUSIONS AND RECOMMENDATIONS 1	5
3.1 UN	ITS #1 AND #2	5
3.1.1	Conclusions	5
3.1.2	Recommendations1	7
3.2 UN	IIT #31	7
3.2.1	Conclusions	8
3.2.2	Recommendations	8
3.3 Fu	EL RELATED ISSUES (COMMON UNITS 1,2,3)	9
3.3.1	Conclusions	9
3.3.2	Recommendations1	9
4 UNITS	#1 AND #2 20	0
4.1 UN	IT DESCRIPTION AND HISTORY	0
4.2 BA	SIS OF S TUDY	1
4.2.1	Fuel	1
4.2.2	Base Heat Balance Information 2	1
4.2.3	Unit Operating Data	1
4.2.4	Unit Physical Arrangement	2

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 3 of 90 Babcock & Wilcox PGG Canada

B&W Ref. 312C

Holyrood Units #1,2,3

4.2.5	Heat and Mass Balance Calculations	22
4.2.6	Boiler Surface Heat Transfer Effectiveness Calculations	22
4.2.7	Furnace Heat Transfer Effectiveness Calculations	23
4.2.8	Air Heater Heat Transfer Effectiveness Calculations	23
4.3 DIS	SCUSSION OF RESULTS – UNITS #1 AND #2	24
4.3.1	Review of Operating Data	24
4.3.2	Unit Heat Rate	25
4.3.3	Fuel Oil Flow	28
4.3.4	Restore Unit Output by Reducing Flue Gas Pressure Drops	28
4.3.5	Other Considerations to Restore Unit Load	34
4.3.6	Heating Surface Effectiveness (Kf Study)	35
5 UNIT #	#3	38
5.1 UN	IIT DESCRIPTION AND HISTORY	38
5.2 BA	SIS OF STUDY	39
5.2.1	Fuel	39
5.2.2	Base Heat Balance Information	39
5.2.3	Unit Operating Data	39
5.2.4	Unit Physical Arrangement	40
5.2.5	Heat and Mass Balance Calculations	40
5.2.6	Boiler Surface Heat Transfer Calculations	40
5.2.7	Furnace Heat Transfer Effectiveness Calculations	40
5.2.8	Air Heater Heat Transfer Effectiveness Calculations	41
5.3 DIS	SCUSSION OF RESULTS	41
5.3.1	Review of Operating Data	41
5.3.2	Turbine Generator Heat Rate	41
5.3.3	Deviations from Design Turbine – Boiler Boundary Conditions	43
5.3.4	Fuel Oil Flow	44
5.3.5	Boiler Efficiency and Air Heater Leakage	45
5.3.6	FD Fan Duty Requirements – Design vs Current	46

Newfoundland and Labrador Hydro (NLH) Holyrood Station

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 4 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

5.3	3.7 FD Fan Capacity Discussion	48				
5.3	3.8 Air Heater 'ARVOS' basket replacement	50				
5.4	HEATING SURFACE EFFECTIVENESS (KF STUDY)	52				
6 FU	EL OIL RELATED ISSUES (COMMON UNITS #1,2,3)	55				
6.1	ATOMIZING TEMPERATURE	57				
6.2	FUEL OIL ADDITIVES	59				
6.3	AIR HEATER DIFFERENTIAL TREND – OCT 22, 2017 TO JAN 4, 2018 (UNIT #3)	61				
6.4	HEATING SURFACE REMOVAL	63				
6.4	A.1 Air Heater Heating Surface Removal	63				
6.4	1.2 Economizer Heating Surface Removal	65				
7 W	ARRANTY / LIMITATION OF LIABILITY	67				
8 AF	PENDICES	68				
8.1	ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR					
BOIL	er #1 & 2	68				
8.2	TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988	72				
8.3	B&W BOILER PERFORMANCE DATA SHEET (C/7391)	87				
8.4	UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 Rev 2)	88				
8.5	UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING)	89				
8.6	ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3)	90				
List of	Figures					
Figure	1 Unit #1 Potential MW Output Increases	10				
Figure	2 Unit #2 Potential MW Output Increases	11				
Figure	3 Unit #3 Potential MW Output Increases	13				
Figure	4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency	27				
Figure	5 Unit #1 Furnace Pressure Design Vs Actual	29				
Figure	Figure 6 Unit #2 Furnace Pressure Design Vs Actual 29					
Figure	7 Unit #1 Pressure Drops Prorated to 174.2 MW	31				
Figure	8 Unit #2 Pressure Drops Prorated to 174.2 MW	31				

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 5 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

Figure 9 Unit #1 Furnace Pressure - Restore Surface Cleanliness/Efficiency	32
Figure 10 Unit #2 Furnace Pressure - Restore Surface Cleanliness / Efficiency	33
Figure 11 West FD Fan Jan 4/18 Unit #3	48
Figure 12 East Fan Jan 4/18 Unit #3	49
Figure 13 FD Fans Estimated Operating Point, 150 MW, Jan 4/18 Unit #3	50
Figure 14 FD Fan Performance - New ARVOS Air Heater Hot End Elements Unit #3	52
Figure 15 Unit #3 Potential MW Output Increase from Improved Efficiency	54
Figure 16 Fuel Oil Sulphur % by Wt. (1995-2017)	55
Figure 17 Fuel Oil Vanadium PPM (1995-2017)	56
Figure 18 Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2	57
Figure 19 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Celsius)	58
Figure 20 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Fahrenheit)	58
Figure 21 B&W Recommended MgO Dosing Rate lb/Mwhr	60
Figure 22 Air Heater Differential Index - Unit 3	62
Figure 23 Unit 3 MW Output Oct 2017- Jan 2018	62
Figure 24 Air Heater ACET Oct 2017- Jan 2018 Unit 3	62
List of Tables	
Table 1 Units #1 and #2 Operating Data Conditions	22
Table 2 Units #1 and #2 Heat Rate Effect on Furnace Pressure	26
Table 3 Fuel Oil Flow Calculated/Expected Units #1 and #2	28
Table 4 Maximum Load As Limited by Furnace Pressure- Restore A/H and/or Econ Pressure	!
Drop	33
Table 5 Kf and FEGT Summary, Units #1 and #2	36
Table 6 Stack Temperature Change for Change in Upstream Gas Temperature	37
Table 7 Turbine - Generator Heat Rate Design vs Current Unit #3	42
Table 8 Heat Rate Corrections Unit #3	43
Table 9 Fuel Oil Flow Calculated/Expected Unit #3	44
Table 10 Boiler Efficiency and Air Heater Leakage (Unit #3)	45
Table 11 FD Fan Airflow Requirements - Design vs Current (Unit #3)	46

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 6 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

Table 12 Fd Fan Pressure Rise - Design Vs Operating Unit #3	47
Table 13 Arvos Replacement Hot End Heating Elements Performance	51
Table 14 Kf and FEGT Summary Unit #3	53

Holyrood Units #1,2,3

1 INTRODUCTION

The three oil fired units at Newfoundland and Labrador Hydro's Holyrood station are currently not capable of generating their rated megawatt outputs. Newfoundland and Labrador Hydro (NLH) requested B&W to perform this engineering study to identify the causes of the current limitations and make recommendations to return the units to full load capability. The B&W proposal for this study was B&W reference TP001082 issued on 21 November 2017. A two stage approach was proposed. The first stage identifies the causes of load limitations and the second stage focuses on the steam generator heating surface effectiveness. This report summarizes the results of both stages.

The Unit #1 and #2 boilers at Holyrood are Combustion Engineering (CE) units built in the late 1960's. The Unit #3 boiler was provided by Babcock & Wilcox Canada (B&W) in 1979. All three boilers are pressurized (i.e. forced draft fans only). The turbine-generator sets for all three units were supplied by Hitachi Ltd. The three units were originally rated at 150 MW (Gross). Units #1 and #2 were up-rated to 174.2 MW in 1988 and 1989 respectively.

The maximum unit load for Units #1 and #2 was limited to 133 and 125 MW (gross) respectively by furnace pressure per the January / February 2018 operating data considered in this study. The maximum load for Unit #3 was limited by FD fan capacity to128 MW per January 2018 operating data.

The load limitation for Unit #1 and #2 is maximum furnace pressure thus this study focuses on the factors which affect furnace pressure for these units. The load limiting factor for Unit #3 is FD fan capacity so the focus is on fan capacity.

The common fuel oil supply system is also considered with respect to issues that affect boiler performance.

Holyrood Units #1,2,3

2 EXECUTIVE SUMMARY

Recent losses in the capacity of the three Holyrood units are primarily a result of:

- i) Increases in air and flue gas pressure drops across the cold end boiler heating surfaces (economizers and air heaters) due to oil firing deposits (fouling) on these surfaces. These deposits form predominantly during periods of low load and startup when the heating surfaces are cold and combustion efficiency is low.
- Degradation of unit heat rate which increases the required heat input per MW.
 These increases lead to increased furnace pressure and FD fan loading in turn.

Units #1 and #2 are currently load limited by the maximum allowable furnace pressure. Unit #3 is load limited by the FD fans.

Reductions in maximum load capability for Units #1 and #2 have been present since 2015/2016. The reduction in maximum load for Unit #3 occurred relatively quickly in the Oct 2017-Jan 2018 time period.

Due to excessive deposition, all three units experience increased draft losses. The air heaters on all three units are affected. Units 1&2 are equipped with extended surface (finned) economizers which also experience increased draft losses. Replacing or cleaning of fouled heat transfer surfaces to 'as new' condition (if possible) will restore the design maximum unit load capability.

If unit load capability is restored by cleaning and/or replacing heat transfer surfaces, reoccurrence of unit de-rates caused by fouling can be prevented by:

- Ensuring air heater Average Cold End Temperatures (ACET) are maintained above 212 F (100 C) at all times.
- Reinstating use of the fuel MgO dosing system
- Increasing the fuel oil atomizing temperature to ensure proper atomization and combustion.
- Ensuring sootblowing steam is dry

The key findings of this study are outlined below.

2.1 Units #1 and #2

The maximum output of Units #1 and #2 is currently limited by the maximum allowable furnace pressure. Maximum furnace pressure is established by the boiler manufacturer according to the structural design of the boiler and furnace. Unit #1 was limited to 133 MW on Jan 18, 2018 at a furnace pressure of 17.9" wg. Unit #2 was limited to 125 MW on Feb 2, 2018 at a furnace pressure of 19.9" wg. Loads of 170 MW were last achieved in Jan 2015 and Oct 2016 for Units #1 and #2 respectively.

The operating furnace pressures are significantly higher than design primarily due to the combination of:

- a) Higher than design air heater and economizer pressure drop due to fouling of the heating surfaces
- b) Higher than design unit heat rate due to reduced boiler efficiency and increased Turbine Generator (T-G) heat rate.
- c) Higher than design air flows

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 10 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

The potential increases in unit load as limited by furnace pressure that would occur if the above issues are corrected are illustrated in Figures #1 and #2. The gains associated with restoring economizer / air heater pressure drops are based on new heating surfaces or surfaces restored to "as new" condition and are thus best case scenarios.

Unit heat rate could be restored by restoring T-G efficiency, correcting lower than design hot reheat steam temperatures, and restoring air heater / economizer heat transfer efficiency (Boiler efficiency).

The higher than design air flows are due to underestimation of the combustion air quantity as indicated by the OEM boiler supplier data sheets (Appendix 8.1) and are therefore not considered 'correctable'.

Figure 1 Unit #1 Potential MW Output Increases

Holyrood Units #1,2,3

Figure 2 Unit #2 Potential MW Output Increases

If both air heater and economizer pressure drops are restored, the full rated 174.2 MW will be achievable on both units without exceeding the current 20" WG furnace pressure alarm point limit. According to site reports, cleaning of these heating surfaces has proven very difficult in the past. Unless more effective methods can be employed such as chemical cleaning the most effective means of reducing furnace pressure would be to replace the fouled air heater elements. Replacement of economizer surfaces would very likely not be economically viable.

Less significant increases in maximum unit load capability are possible by restoring turbine / generator (T-G) heat rate.and/or restoring the heat transfer effectiveness of the boiler heating surfaces. Results of the 'Stage 2' study indicate poor heat transfer effectiveness of the air heaters and economizers. It is important to note that if pressure drops as above are restored by surface cleaning or replacement, a significant portion of the MW gains from increased boiler efficiency will also be realized along with the associated fuel savings.

B&W Ref. 312C

Holyrood Units #1,2,3

Unit # 1 was operating at a furnace pressure of 17.9" wg on January 18, 2018, reportedly load limited by furnace pressure. The reason for this lower operating pressure at that time is unknown. If the maximum operating furnace pressure is increased to 19.9" as per Unit #2, an increase in maximum load of 7.2 MW would be realized.

The reheaters on both units are underperforming significantly. While the cause of poor air heater and economizer performance is clearly fouling as evidenced by high pressure drops, the cause of poor reheater heat transfer performance is not known and should be investigated. Sootblower usage patterns and blowing pressures may need to be adjusted to improve effectiveness. Poor reheater heat transfer effectiveness reduces unit efficiency (and MW output) on four fronts:

- a) Low hot reheat temperature (increased T-G heat rate)
- b) High burner tilts (less furnace effectiveness loss of boiler efficiency)
- c) High superheat sprayflows (increased T-G heat rate).
- d) Increase in stack temperature. (loss of boiler efficiency)

Of the above, item a) is the most significant.

2.2 Unit #3

Unit #3 is load limited by the current capability of the FD fans. Maximum load dropped from 150 MW in October 2017 to 128 MW on January 4, 2018 as air heater pressure drop increased. The pressure drop increased most significantly during lower load operation (less than 100 MW) and when air heater Average Cold End Temperature was less than 100 C (212 F).

The fan VIV's have been restricted to 54/70% open on the east/west fans respectively due to inlet ducting vibration which occurs at higher openings under some operating conditions.

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 13 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

Without this restriction, full load operation would have been attainable on January 4, 2018 when load was limited to 133 MW. An inspection and test program should be implemented to determine how the full fan capacity can be restored.

The required FD fan duty is higher than design primarily due to higher than expected air heater pressure drop and higher than design Unit heat rate (lower than design unit efficiency). Full load operation would be restored given the current FD fan VIV restrictions if the fouled hot end air heater elements are replaced with the proposed "ARVOS" elements and if the existing cold end baskets are clean and in good condition.

With reference to the Jan 4, 2018 operating point (128 MW), increases in unit load capability as per Figure #3 would be possible for fixed fuel input. The largest contributor to unit efficiency reductions is turbine – generator inefficiencies. The largest boiler related contributor to the increase in unit heat rate is low hot reheat temperature.

Figure 3 Unit #3 Potential MW Output Increases

The heat transfer effectiveness of the Unit #3 superheater and reheater declined significantly during the time period from Oct 2017 to Jan 2018. These surfaces should be inspected for cleanliness to determine the cause of this decline. Sootblowing patterns and/or blowing pressures may need to be revised to improve cleanliness.

2.3 Fuel Related Issues (Common Units 1,2,3)

The quality of fuel oil has improved significantly in recent years. A significant reduction in fuel oil Vanadium and Sulphur content occurred in 2006. These improvements would be expected to reduce the tendency towards boiler cold end (air heater and economizer) fouling and boiler corrosion. From a combustion standpoint, the currently utilized fuels are very close to the original Unit #3 design fuel.

The current fuel oil atomizing temperature (approx. 187 F) is at times lower than required for optimal combustion. It is recommended to increase firing temperature to achieve target oilviscosities as discussed in Section 6.1. The MgO additive system was taken out of service in 2014 and reductions in unit load capability for Units #1 and #2 started to occur in 2015-2016 and Unit #3 in late 2017. This system should be placed back into service and the oil dosed at a rate of 1 lb. MgO per lb. V2O in the fuel oil.

The Unit #3 air heater fouled rapidly between Oct 2017 to Jan 2018. During this time period, air heater pressure drop increased most notably during periods of both low load operation and low ACET. When ACET was maintained above 212 F there was no significant increase in pressure drop. It is recommended that air heater ACET is maintained at a minimum of 212 F for all three units.

For Unit #3, the combination of low load operation (possibly poor combustion due to low atomizing temperatures), the lack of MgO additives, and low ACET is the most likely cause air heater fouling that occurred between October 2017 and January 2018.

Fouling in the Unit #1 and Unit #2 air heaters and economizers occurred between 2015-16 and 2018. The operating conditions during which this fouling occurred is unknown. It is most likely that the economizer fouling occurred start-up operation and the air heater during low load and/or start-up operation.

3 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations of this study are summarized below:

3.1 Units #1 and #2

3.1.1 Conclusions

- a) The current maximum achievable load of Units #1 and #2 is limited by furnace pressure due to the combination of the following factors:
 - i. The draft loss across boiler surfaces is higher than design, most notably the economizer and air heater
 - ii. Unit efficiency is lower than design
 - iii. The calculated fuel air flow requirements (per unit fuel flow) are higher than original design
- b) The air heater and economizer pressure drops have increased significantly between the 2015/16 and 2018
- c) Pressure drops across the superheater and reheater are significantly higher than design but are not a major contributor to higher than design furnace pressure.
- d) Reheater heat absorption is lower than design as evidenced by lower than design hot reheat steam temperatures. Low hot reheat temperatures are leading to an up to 1.5% increase in TG heat rate.
- e) The current largest contributors to higher than design furnace pressures and unit derating are:
 - i. For Unit #1, high air heater pressure drop

GT-NLH-005, Attachment 1 Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

- ii. For Unit #2, high economizer pressure drop
- f) Restoring the air heater and/or economizer pressure drops to original design would increase maximum load as limited by furnace pressure per the following table: (Note that restoring both components results in increase above that of individual components- if just one component is restored, furnace pressure is still limited by restriction in the other)

MAXIMUM LOAD AS LIMITED BY FURNACE PRESSURE						
		Unit #1	Unit #2			
Maximum Load Per 2018 Data	MW	133	125			
Increase Maximum Furnace Pressure up to 19.9" WG (Unit #1)		140	125			
Restore Design Air Heater Pressure Drop		159	141			
Restore Design Economizer Pressure Drop		145	151			
Restore Both Economizer and Air Heater	MW	175	175			

- g) Improved heat transfer and boiler efficiency will follow restoration of heating surface cleanliness. FD fan power consumption will also be reduced.
- h) Alternate methods of economizer / boiler surface cleaning such as explosives or acoustic shock – blast methods could be considered if it is not possible to clean these surfaces by conventional means.
- Maximum boiler load as limited by furnace pressure may be increased if i) modifications/repairs to the turbine/generator set are made to improve heat rate.
- It may be possible to increase the current furnace pressure alarm and trip points. The original boiler supplier could advise if this is possible.
- k) The heat transfer performance of the economizer and air heater on both units is significantly lower than design, reducing boiler efficiency significantly
- The heat transfer performance of the reheater heating surfaces is significantly lower I) than design, reducing Turbine-Generator efficiency significantly and boiler efficiency.
- m) Removal of air heater heating surfaces is not recommended due to the negative effect on combustion efficiency and structural limitations of downstream flues/stack.

- n) Partial removal of economizer heating surfaces to reduce pressure drop should be considered as a last resort only due to negative effect on downstream boiler structure and boiler performance.
- o) Increasing the maximum furnace pressure of Unit #1 to 19.9" as per Unit #2 operation will account for 7.2 MW of additional unit output.

3.1.2 Recommendations

- a) Reduce the pressure drop across the air heaters and/or economizers by cleaning and/or replacement of heating surfaces. Prioritize this work as follows:
 - 1) Unit # 1 air heater
 - 2) Unit #2 Economizer
 - 3) Unit #2 Air Heater
 - 4) Unit #1 Economizer
- b) If economizer and boiler surfaces cannot be cleaned by 'conventional' methods investigate alternative methods such as explosive or acoustic shock-blasting
- c) Ensure that the steam supply to economizers and air heater sootblowers is dry
- d) Determine if the current furnace pressure alarm/trip setpoints can be increased. (By original boiler supplier)
- e) Inspect the reheaters to determine the cause of low reheater heat transfer performance.
- f) Use burner tilts within manufacturers recommended range as required to increase hot reheat temperatures
- g) Consider turbine generator condenser upgrades which would improve heat rate.
- h) Consider increasing the maximum furnace operating pressure of Unit #1 to 19.9" wg
- i) Consider increasing the furnace pressure alarm pressures.

3.2 UNIT #3

3.2.1 Conclusions

- a) The current maximum achievable load Unit #3 is limited by the capacity of the FD fans due to the combination of the following factors:
 - i. The FD fans capacity are currently not operated at their maximum capacity
 - ii. Air heater leakage rates are up to 3 times higher than design
 - iii. Air heater pressure drops are 3 to 4 times higher than design
 - iv. Unit heat rate approximately is approximately 10% higher than design due to lower than design boiler efficiency and higher than design Turbine Generator Heat Rate
 - v. Operating excess air to burners approximately 2% higher than design
- b) If the existing FD fan capacity was unrestricted, the full 150 MW unit output could have been attained for the January 4, 2018 operating conditions when maximum load was 128 MW.
- c) Replacing the air heater hot end baskets will restore the unit full load capability of 150
 MW if the cold end baskets to be re-used are clean and in good condition.
- d) The combustion air flow requirement of the fuel oil currently utilized at site is very close to design on a lb/btu input basis.
- e) The calculated fuel flows based on unit PI data and the measured fuel flow are both significantly higher than expected confirming that unit efficiency is lower than design. The calculated and measured fuel oil flows are within 3% of each other.
- Removal of air heater heating surfaces is not recommended due to the negative effect on combustion efficiency and structural limitations of downstream flues/stack.

3.2.2 Recommendations

- a) Establish if the current operating restrictions placed on the FD fans can be removed.
 - i. Perform an operating test with increased FD fan VIV position and RPM at high load to determine current operating limitations (duct vibration?)

- ii. Inspect the FD fan internals, instrumentation, inlet/outlet ducts and correct any anomalies which may lead to operating problems.
- iii. Perform an FD fan test after inspections, including inlet/outlet pressure measurements and inlet airflow measurements.
- b) Refurbish the air heater seals to reduce leakage and FD fan power consumption.
- c) Clean or replace air heater heating elements which are leading to the high pressure drop and load limitations.
- d) Ensure that the steam supply to economizer and air heater sootblowers is dry.
- e) Consider turbine generator condenser upgrades / repairs which would improve TG heat rate

3.3 Fuel Related Issues (Common Units 1,2,3)

3.3.1 Conclusions

- a) From a combustion and heating value standpoint, the fuel oil currently utilized is very close to the original Unit #3 design fuel.
- b) Fuel oil Sulphur and Vanadium content have been reduced significantly since 2009.
- c) Fouling of the Holyrood units leading to reduced maximum load capability has occurred between 2015 and 2018, following the discontinuation of fuel oil MgO injection.
- d) The unit #3 operating conditions between October 2017 and January 2018 show increasing air heater pressure drop occurs at reduced loads, and when air heater ACET drops below 212 F.
- e) Atomizing fuel oil temperatures must be sufficient to ensure proper atomization / combustion of the range of fuels currently burned (Up to 200 SFS @ 122 F)

3.3.2 Recommendations

- a) Recommission the fuel oil MgO injection system and inject MgO into the fuel oil supply at a rate of 1 lb. MGO per lb. V2O in fuel oil.
- b) Maintain a minimum air heater ACET of 212 F
- c) Maintain atomizing oil atomization as follows for fuel oil viscosities up to 200 SFS@122
 °F

- a. Units #1 and #2 that temperature required to achieve 100 SSU or in the absence of viscosity data 230 °F
- b. Unit #3: that temperature required to achieve 135 SSU or in the absence of viscosity data 225 $^{\rm o}{\rm F}$

4 UNITS #1 and #2

4.1 Unit Description and History

The Unit #1 and #2 boilers were supplied by Combustion Engineering Canada in 1969. The boilers supply main and reheated steam at a design 1000 F to Hitachi steam turbines. Air is supplied by two Forced Draft fans through steam coil air heaters and regenerative air heaters to tilting tangentially fired burners in the furnace. Products of combustion leaving the furnace pass through a parallel flow secondary superheater, followed by a counter flow reheater, primary superheater, and finned tube economizer before entering two Ljungström regenerative air heaters.

The units were uprated to deliver 174.2 MW in 1987. Four rows of primary superheater were removed and tube material upgrades were made to the secondary superheater as part of the uprate. The unit was originally designed to control steam temperatures with the combination of flue gas recirculation and burner tilts. The gas recirculation fans have been removed from service.

Neither unit has been capable of operating at loads above 170 MW in recent years. The most recent time period that operating data was available for 170 MW was February 2015 for Unit #1 and October 2016 for Unit #2. The maximum load achievable is currently limited by maximum furnace pressure which has an alarm setpoint of 20" wg. The units will trip if furnace reaches 25" wg. Operators currently maintain furnace pressure below the 20" wg alarm point.

Holyrood Units #1,2,3

4.2 Basis of Study

This study is based on information provided by NLH as outlined below.

4.2.1 Fuel

NLH supplied a spreadsheet summary of the analysis of fuel oil deliveries to Holyrood between 1997 and 2017. Heating value, density, and trace element composition was included in this spreadsheet. A discussion of the fuel characteristics is included in a following section of this report.

4.2.2 Base Heat Balance Information

The expected original design plant operating information for the uprated unit was supplied by NLH as follows:

- Alstom letter to NF Power "Boiler Predicted Performance Data for Boiler #1 & 2" dated Aug 03, 2000. This document is the predicted boiler performance in the "Uprated" condition
- Turbine heat balance conditions as outlined in document "TIR# 10236-893A, UPRATE" Dated 8/5/88.
- The original Combustion Engineering 'Contract Data Sheet' (Contract 68119)

These documents are included in Appendices 8.1 and 8.2 for reference.

4.2.3 Unit Operating Data

B&W requested historical operating data representative of unit operation which was not restricted by furnace pressure and current restricted operating data. In response, 'PI' plant historian data was provided by Newfoundland and Labrador Hydro (NLH) in spreadsheet form for the two units at two time periods as outlined in Table 1.

Holyrood Units #1,2,3

Table 1 Units #1 and #2 Operating Data Conditions

	Unit 1		Unit 2		
Date	Jan 18, 2018	Feb 9, 2015	Oct 18,	Feb 2, 2018	
			2016		
Unit Output MW	133	169	170	125	
Operating	Load Limited by Furnace	Not	Not	Load Limited by Furnace	
Condition	Pressure	Restricted	Restricted	Pressure	
	@ 17.9" WG			@ 19.9" WG	

It is not known why furnace pressure was limited to 17.9" wg on Unit #1 in January 2018. On possibility is that unstable furnace pressures may have led operators to reduce load to keep furnace pressure out of alarm.

4.2.4 Unit Physical Arrangement

NLH provided boiler general arrangement drawings defining the boiler heat transfer surface arrangement.

4.2.5 Heat and Mass Balance Calculations

B&W Single Heat and Material Balance Program – P08475 was used to calculate flue gas flow, flue gas analysis, combustion air flow, and boiler efficiency based on the fuel analysis, and the operating steam/water, and the air/gas boundary conditions.

4.2.6 Boiler Surface Heat Transfer Effectiveness Calculations

The boiler convective component heat transfer effectiveness (Kf) calculations were performed using B&W's proprietary convective surface heat transfer program "P140". The inputs to this program are the FEGT, the flue gas flow / composition from P08475, and the boiler tube bank heating surface geometry.

The thermal performance of the boiler heat transfer components (superheater, reheater, and economizer) heating surfaces is characterized by B&W as 'Kf' factors. Kf is

calculated by P140 based on the operating data, (component outlet gas temperature and calculated flue gas flow, steam or water inlet and outlet conditions and flow). The component Kf factor is the ratio of 'test' gas side heat transfer conductance to 'expected' gas side conductance:

$$Kf = Ug_{test} / Ug_{exp}$$

The tube bank geometry and flue gas flow are known. P140 calculates the expected gas side heat transfer conductance Ug_{exp} (Btu/hr/ft^2/°F) on this basis using the standard Kf. For oil fired units, the expected Kf is 1.0 for superheater, reheater, and economizer surfaces. The overall component heat absorption is calculated from the measured steam or water inlet/outlet conditions (enthalpies) from which a test gas side conductance is determined (Ug_{test)}. For oil firing Kf less than 1.0 indicates the heating surfaces are absorbing less heat than expected due to fouling, gas bypassing, unexpected gas flow patterns, etc.

The flue gas temperatures throughout the boiler are calculated by heat balance starting with the measured temperature at the economizer outlet.

4.2.7 Furnace Heat Transfer Effectiveness Calculations

The actual Furnace Exit Gas Temperature (FEGT) is calculated by heat balance around the convective heating surfaces. The difference in temperature between the calculated FEGT and the FEGT as predicted by Alstom is an indication of relative furnace effectiveness. An actual FEGT higher than the expected FEGT indicates underperforming (dirty) furnace surfaces (or higher than expected burner tilts).

4.2.8 Air Heater Heat Transfer Effectiveness Calculations

Holyrood Units #1,2,3

B&W relies on air heater vendors calculations to predict thermal performance of regenerative air heaters. Air heater heat transfer effectiveness Kf values are thus calculated based on the ratio of the actual heat transfer to the air heater vendors heat transfer adjusted to the actual operating conditions. The 'base' Kf factor to match air heater vendor predicted performance is set to 1.0 thus a calculated Kf value of less than 1.0 indicates heating surfaces are under performing. For Units #1 and #2 the base performance operating condition was taken from the Alstom August 2000 predicted performance data 'MCR' load case.

4.3 DISCUSSION OF RESULTS – Units #1 and #2

Both Units #1 and #2 are currently limited by the maximum allowable furnace pressure. Furnace pressure is a function of the flow resistance (geometry, cleanliness) of the downstream boiler components and the flue gas flow through these components. Flue gas temperature is also a factor, (higher temperatures = higher resistance at a given mass flow) but this effect is small relative to resistance and flue gas flow and is not considered in this study.

4.3.1 Review of Operating Data

The 'PI' system operating data used in this study analysis is generated by the plant permanent instrumentation. It is adequate for detecting trends but not always accurate for measuring 'bulk flow' parameters such as flue gas and air temperatures in large ducts were temperature stratification is expected. As such, the analysis which is based on plant instruments can be considered accurate from a relative standpoint (i.e. to illustrate trends) only. Evaluation of absolute plant performance requires calibrated instruments and air/gas temperature grids in large flues and ducts.

In general, the most accurate plant instruments are those indicating the conditions of major unit inputs/outputs (i.e. fuel flow, MW output), and the 'terminal point' connections between boiler and turbine cycle (i.e. feedwater flow, steam temperatures and

Holyrood Units #1,2,3

pressures). Steam flow as indicated by HP turbine pressure is not considered as accurate as feedwater flow thus steam flow was calculated from the measured (*feedwater flow – blowdown flow – Aux steam flow*). Reheat steam flow was calculated based on (*calculated steam flow - HP turbine 'leakages' - #6 feedwater heater steam flow*). The HP turbine leakages were taken from the Hitachi 1988 turbine heat balances, and the #6 feedwater flow is calculated by heat balance around the heater based on operating data.

The heat transfer effectiveness analysis (Kf study) requires steam and water – side enthalpies in and out of each boiler component. For units with superheat attemperators, attemperator water flow and attemperator inlet steam temperature are required to determine the heat absorption of the primary and secondary superheater. The measured attemperator steam outlet temperature is prone to reading low due and is not considered accurate. The Units #1 and #2 attemperator inlet steam temperatures are not available, thus only total superheater surface effectiveness (Kf) can be evaluated.

The effect on calculated Kf values of the above factors can be significant. The accuracy of the calculated Kf values would not be expected to be better than +/- 0.1.

4.3.2 Unit Heat Rate

The resistance (Pressure drop) of boiler components and thus the furnace pressure is proportional to the square of flue gas flow. The required flue gas flow is a function of the required unit MW output, the unit efficiency, the fuel theoretical air flow requirements, and the excess air required for complete combustion. Unit efficiency is the combination of Turbine-Generator (TG) efficiency (Heat Rate) and boiler efficiency. These parameters are shown in Table 2.

Holyrood Units #1,2,3

UNIT HEAT RATE EFFECT ON FURNACE PRESSURE							
		Design	UNIT #1		UNIT #2		
Date		Uprate 2000	Feb9, 2015	Jan18, 2018	Oct18,2016	Feb2,2018	
Unit Output	MW	174.2	169.5	132.6	170	125.2	
TG Heat Rate	Btu/kWhr	7982	8541	8540	8156	8377	
Boiler Efficiency	%	90.01* 88.06**	85.1	86.51	85.14	86.07	
Unit Heat Rate	Btu/kWhr	9053	10037	9871	9579	9733	
Fuel Theoretical Air	Lb/10,000 btu	6.865	7.407	7.407	7.407	7.407	
Excess Air % 5 5.4 8.1 3.6 7.3						7.3	

Table 2 Units #1 and #2 Heat Rate Effect on Furnace Pressure

*Design boiler efficiency per Alstom data based on 18,600 btu/lb fuel, steam coil and oil heating steam provided by external supply.

**Efficiency based on 18,450 Btu/lb fuel, steam coil and oil heating steam provided by unit (For direct comparison to B&W calculations – this study)

Significant observations from Table 2:

- The TG heat rates are both higher than design.
 - o Unit #1 approximately 7% higher
 - Unit #2 approximately 2-5% higher
- Boiler efficiency is approximately 4% lower than design with heat credits (aux steam from 'outside'), approximately 2% lower than design without heat credits.
- The theoretical combustion air used by Alstom is inconsistent with the fuel analysis. The airflows reported by Alstom in the updated expected performance are not consistent with the combustion airflow required for heavy fuel oil. Per the Alstom 2000 uprate letter data sheet, the MCR theoretical airflow used was 6.73 lb air per 10,000 btu input i.e. (air heater outlet airflow / excess air) / (fuel flow * 18,600 Btu/lb) / 10,000. Heavy fuel oils typically require theoretical combustion air 7.4 to 7.6 lb. per 10,000 Btu input. My calculations are based on a theoretical air requirement of 7.35 lb per 10,000 Btu thus my

calculated airflows are higher than the Alstom airflows. This additional airflow contributes to higher furnace pressure.

Figure 3 illustrates the MW gains that would be expected for a fixed firing rate if the original design T-G heat rate and boiler efficiency were restored (ref the 2018 operating data)

Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency

A significant portion of the increased T-G heat rate is due to lower than design hot reheat steam temperatures. Unit #2 was operating at 898 F at the turbine in February 2018 leading to a T-G heat rate increase of approximately 1.5%. The reheaters on Units #1 and 2 should be inspected to identify the cause of the performance shortfall.

The net effect of the increased unit heat rate, the higher theoretical air, and change in excess air is an increase in unit flue gas flow for a given unit MW output. The increased flue gas flows by themselves are responsible for a significant increase in furnace pressure (reference original design draft losses). The MCR expected furnace pressure

per the Alstom data is 11.3" wg @ 174.2 MW. The increased flue gas flow associated with increased unit heat rates alone increases expected furnace pressure to 13.9" wg for Unit #1 and 12.7" wg for Unit #2.

4.3.3 Fuel Oil Flow

The measured and calculated fuel oil flow in relation to expected oil flow provide an indication of unit heat rate. Table 3 illustrates these quantities for the two units and test times. The Expected / Calculated Oil Flows are consistently above 1.0, which is an indication of higher than design unit heat rate.

 Table 3 Fuel Oil Flow Calculated/Expected Units #1 and #2

Fuel Oil Flow Calculated/Expected Units #1 and #2								
Unit		1		2				
Date		Feb 9 2015	Jan 18 2018	Oct 18, 2016	Feb 2, 2018			
Unit Output	MW	170	133	170	125			
Expected Oil Flow	Lbs/hr	82176	64175	82383	60487			
(18,450 btu/lb HHV, HR and Blr								
Efficiency)								
Calculated Oil Flow	Lbs/hr	92392	71110	88436	66170			
Calculated/Expected Oil Flow	-	1.12	1.11	1.07	1.09			
Plant Measured Oil Flow	Lbs/hr	90628	68157	90466	65602			
Oil HHV	Btu/lb	17,193 - 18,702 (2015-2017 Deliveries)						

4.3.4 Restore Unit Output by Reducing Flue Gas Pressure Drops

Furnace pressure is driven by the pressure drops of the 'downstream' boiler components. These are the superheater/reheater, economizer, air heater, flues to stack. The predicted and actual pressure drops (i.e. the furnace pressure) for Units #1 and #2 are illustrated in Figures 4 and 5.

Holyrood Units #1,2,3

Figure 5 Unit #1 Furnace Pressure Design Vs Actual

Figure 6 Unit #2 Furnace Pressure Design Vs Actual

Holyrood Units #1,2,3

The original pressure drops were almost doubled at the times when full load was nearly (170 MW) achieved in the 2015/2016 data with furnace pressures approaching the 20" wg alarm. Between that time and 2018, pressure drops increased even further, predominantly due to increases in economizer and regenerative air heater pressure drops. As these pressure drops increased, unit load was restricted in step. It is not known if the pressure drop increases were gradual or associated with particular operating scenarios. A review of all operating data between 2015-2016 and current would be required to reveal trends.

The predicted, 2015/2016, and current flue gas pressure drops by boiler component are shown in Figures 6 and 7. Pressure drops were prorated from actual operating conditions to 174.2 MW for illustration. The 174.2 MW output is not currently achievable on either unit with the current furnace pressure constraint. For Unit #1, the air heater is the largest contributor to current total pressure drop. For Unit #2, the economizer is currently the largest pressure drop contributor.

The superheater and reheater pressure drops are also significantly higher than design, indicating fouling in these components and / or tube misalignment. The magnitude of this contribution to furnace pressure is small relative to the air heater and economizer. Hot reheat temperatures are currently much lower than design, which combined with the high pressure drop suggests that the cleanliness of these surfaces is also poor.

Holyrood Units #1,2,3

Figure 7 Unit #1 Pressure Drops Prorated to 174.2 MW

Figure 8 Unit #2 Pressure Drops Prorated to 174.2 MW

Figures 8 and 9 illustrate the current load limitations of Units 1 and 2 and the expected increases in load capability if:

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

- The air heater pressure drops can be restored to original design
- The economizer pressure drops can be restored to original design
- Both air heater and economizer pressure drops are restored to original design
- Both air heater and economizer pressure drops and boiler efficiency restored to original design. (Reduced stack temperature will be associated with cleaner surfaces)

Figure 9 Unit #1 Furnace Pressure - Restore Surface Cleanliness/Efficiency

Holyrood Units #1,2,3

Figure 10 Unit #2 Furnace Pressure - Restore Surface Cleanliness / Efficiency

The potential increases in maximum load as limited by the furnace alarm pressure are shown in the Table 4:

Table 4 Maximum Load As Limited by Furnace Pressure- Restore A/H and/or Econ Pressure Drop

MAXIMUM LOAD AS LIMITED BY FURNACE PRESSURE – RESTORE A/H AND/OF ECON PRESS. DROP								
		Uni	it #1	Unit #2				
		(Per Jan 18, 2018 Data @ 133 MW)		(Per Feb 2, 2018 Data @ 125				
				MW)				
Action	Units	Maximum Load	Load Increase	Max Load	Load Increase			
Increase Maximum Furnace	MW	140	+7	-	-			
Pressure to 19.9" (UNIT #1)								
Restore Design Air Heater	MW	161	+28	141	+16			
Pressure Drop								
Restore Design Economizer	MW	146	+20	151	+26			
Pressure Drop								
Restore Both Economizer and	MW	175	+53	175	56			
Air Heater (Max 175 MW)			(Inc. FP Increase)					

Table 4 shows that the largest gain in MW output for Unit #1 is restoring the air heater pressure drop. For unit #2, the biggest gain is in restoring the economizer pressure

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations drop. If both economizer and air heater pressure drops are restored on both units, they will not be load limited below 174.2 MW by furnace pressure. From the charts above, it can be seen that the gains in unit MW output from largest to smallest are:

- 1) The Unit #1 Air Heater
- 2) The Unit #2 Economizer
- 3) The Unit #2 Air Heater
- 4) The Unit #1 Economizer

If cleaning air heater surfaces is not possible, replacement of heating surfaces which are fouled would restore air heater pressure drop.

Replacement of economizer surface is likely not economically viable if conventional cleaning methods are ineffective. Other methods of cleaning such as the use of explosives or acoustic shock methods (Shock pulse) should be considered.

Improvements in surface cleanliness will increase boiler efficiency, slightly increasing maximum load (if limited by furnace pressure) and reducing fuel oil consumption. There will also be a reduction in FD fan power consumption. These effects were not calculated as part of the current study.

4.3.5 Other Considerations to Restore Unit Load

Improvements in TG heat rate through modifications / repairs to the turbine-generatorcondenser would increase unit output when unit input is limited by furnace pressure. The effect of this type of modifications has not been considered in this study.

It may be possible to increase the furnace pressure alarm and trip settings. This would increase the maximum achievable load. The original boiler structural design calculations would need to be reviewed. This review would need to be done by the original boiler designer.

Once cleaned (or heating surfaces replaced), methods of preventing future fouling of air heater and economizer surfaces should be employed. For the air heater, a sufficiently
high Average Cold End Temperature (ACET) must be maintained at all loads and during startups. Air heater pressure drop trends from Unit #3 (See Unit #3 section of this report) suggest a minimum ACET of 212 F should be maintained. For the economizer, temperatures are high enough during operation to prevent fouling. Fouling may occur during start ups when feedwater temperatures and/or flows are low.

Sootblowing steam must be dry to prevent the formation of sticky oil-ash deposits. This is particularly important during low loads and startups when combustion efficiency is at its lowest.

Unit #1 could deliver an additional 7 MW of output if furnace pressure is increased to the 19.9" wg level per the Unit #2 Feb, 2018 data. While it is unlikely that the furnace trip point of 25" wg may be increased, it may be possible to increase the alarm point from the current 20" wg dependant on the stability of furnace pressure during high load operation.

4.3.6 Heating Surface Effectiveness (Kf Study)

B&W performance program P140 was used to calculate the convective surface Kf values of the boiler components for the operating periods which were considered. FEGT is also calculated by P140 based on heat balance around the boiler components. The air heater Kf values were determined with reference (Kf = 1.0) to the Alstom predicted performance data (2000). The expected and actual Kf's are shown in Table 5. The expected Kf for bare tube surfaces is 1.0. The expected Kf for finned tube economizer surface is 1.2.

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 36 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

	Kf and	FEGT Summar	y, Units #1 and	#2	
Unit #	1 & 2		l	2	2
Date	Expected	Feb, 2015	Jan, 2018	Oct, 2016	Feb, 2018
Unit Load	174.2	170	133	170	125
Air Heater Kf	1.0	0.66	0.7	0.53	0.67
Economizer Kf	1.2	0.67	0.74	0.65	0.64
Superheater Kf	1.0	0.92	0.88	0.93	0.78
(Avg Prim+Sec)					
Reheater Kf	1.0	0.88	0.67	0.72	0.72
FEGT(°F)	2589	2577	2438	2577	2408
(Expected/Actual)		2590	2439	2669	2396
Burner Tilt (Deg)	+10	+10.5	+14.8	+10.5	+15.7
(Expected/Actual)		-1.4	4.7	-6.3	+0.2
Hot Reheat Temp	1000	966	901	947	898
(Deg F)					

Table 5 Kf and FEGT Summary, Units #1 and #2

Table 5 illustrates that Kf factors in all cases are less than expected, thus all surfaces downstream of the furnace are underperforming from a heat transfer standpoint. The Unit #1 reheater and the Unit #2 superheater Kf's have dropped significantly between 2015/16 and current operation. As expected from the observed greater than expected draft losses, the economizer and air heater surfaces have the lowest Kf's. On the other hand, there is not a significant difference between the 2015/16 Kf's and current Kf's of the economizer and air heater when draft losses were seen to increase. The cause of this apparent anomaly is not clear. It is possible that some sections of these components are currently cleaner than they were, but blockages in other sections (i.e. center of bank where washing has not penetrated) have increased.

The reheater performance is significantly lower than expected. This has the effect of both increasing stack gas temperature (reducing boiler efficiency) and increasing heat rate.

Burner tilts are not being utilized to maintain design hot reheat temperatures. Positive burner tilts between 10 and 15 degrees would be expected; actual burner tilts are in the +/- 5 degree range. The calculated FEGTs are generally higher than expected, even with the lower than expected burner tilts, suggesting that the furnace surfaces are also underperforming.

In general, the most effective means of reducing stack temperature to improve boiler efficiency is by improving the performance of boiler components in the low gas temperature regions i.e. the air heater and then the economizer. Table 6 illustrates the effect of a 10 F reduction in gas temperature on stack temperature and boiler efficiency.

Stack Gas Tempe	rature Change for Change in L	Jpstream Gas Tempera	ature
Component /	Change in Component Gas	Change in Stack	Change in Boiler
Location	Outlet Temperature (F)	Temperature (F)	Efficiency (%)
Air Heater Gas	10	10	+0.2
Outlet			
Economizer Gas	10	4	+0.08
Outlet			
Primary SH Gas	10	0.8	+0.016
Outlet			

Table 6 Stack Temperature Change for Change in Upstream Gas Temperature

Improvements of boiler heat transfer performance to improve unit efficiency should be prioritized as follows:

- 1) Air heater (Increased Boiler Efficiency)
- 2) Economizer (Increased Boiler Efficiency)

- 3) Reheater (Increased Boiler Efficiency and Reduced T-G Heat Rate)
- 4) Superheater

Note that improvements in reheater heat transfer performance will have three positive effects on unit efficiency:

- A small improvement in on boiler efficiency due to lower stack temperature
- A reduction in T-G heat rate by means of higher hot reheat temperature
- Lowering of burner tilts leading to lower superheat spray quantity

If burner tilts are modulating to control hot reheat steam temperature, improvements in furnace surface performance will have little to no effect on unit efficiency. Burner tilts respond to the required hot reheat steam temperature and adjust for reduced furnace cleanliness until the maximum negative tilt (Normally -30 Degrees) is approached. Excessively dirty furnace surface can lead to slag falls and this must be monitored visually and controlled accordingly.

5 UNIT #3

5.1 Unit Description and History

Holyrood Unit #3 is a B&W 'EI Paso' type boiler. The unit is coupled to a 150 MW Hitachi steam turbine. The boiler delivers a nominal 1000/1000 F steam to the HP/IP turbine. Steam temperature is controlled by biasing the firing rate between the three levels of burners. Air is supplied by two "Sheldons" FD fans. Air flows from the two fans to steam coil air heaters for ACET control and then into two "Howdens" Ljungström type regenerative air heaters. Oil is burned in nine circular oil burners arranged in three levels. Flue gas exits the furnace to the reheater and secondary superheater, then down through the primary superheater and bare tube economizer before passing through the regenerative air heater to the stack.

Reheater surface was removed by Alstom in 2001. The intent of this modification is unknown. The most likely reason to would have been to reduce high load reheater sprayflow.

The FD fan VIV's have been limited to approximately 54% and 70% open on the East and West fans respectively due to vibration of the fan inlet ducting.

B&W are not aware of any other modifications to the unit which would affect the results of this study

5.2 Basis of Study

5.2.1 Fuel

The fuel oil analysis as used in the original Unit #3 design was used (Ref discussion in following sections of this report).

5.2.2 Base Heat Balance Information

Baseline predicted unit performance was taken from the original boiler design B&W boiler Performance Data (PD) sheet dated 9/5/78 and the original heat balance diagram sheet NLH Drawing AO-1403-200-M001 Rev 2. These documents are included in Appendices 8.3 and 8.4 for reference.

5.2.3 Unit Operating Data

B&W requested unit operating data representative of operation for a time period when the unit was capable of full load and another when unit was not capable of full load. NLH subsequently provided plant 'PI' data from Oct 22, 2017 with the unit at 150 MW and January 4, 2018 when the maximum attainable load was 128 MW. Due to the relatively short time period over which maximum attainable unit load was reduced, B&W requested hourly operating data for the time period between Oct 22, 2017 and January 4, 2018 in order to understand the conditions that were leading to maximum load reductions.

5.2.4 Unit Physical Arrangement

The original B&W boiler arrangement drawings of the boiler physical arrangement were used as basis of the calculated performance. The performance model (P140) was adjusted to reflect the 2001 reheater surface removal.

5.2.5 Heat and Mass Balance Calculations

B&W Single Heat and Material Balance Program – P08475 was used to calculate flue gas flow, flue gas analysis, combustion air flow, furnace heat absorption, Furnace Exit Gas Temperature (FEGT), and boiler efficiency based on the fuel analysis, steam/water, air/gas boundary conditions, and furnace heating surface arrangement.

5.2.6 Boiler Surface Heat Transfer Calculations

Convective surface heat transfer was calculated using B&W program "P140". The methodology is described in the above discussion for Units #1 and #2.

5.2.7 Furnace Heat Transfer Effectiveness Calculations

As described above, for Units #1 and #2, furnace performance is quantified by the difference between the actual and predicted FEGT. For the B&W unit, the predicted FEGT is calculated by P8475 per B&W standard methods. FEGT higher than predicted indicates underperforming furnace surfaces and/or large amounts of burner fuel input biasing.

5.2.8 Air Heater Heat Transfer Effectiveness Calculations

Air heater heat transfer effectiveness is calculated as per the above discussion for Units #1 and #2.

5.3 DISCUSSION OF RESULTS

5.3.1 Review of Operating Data

A discussion of the limitations of PI operating data vs test data and the effect on calculations is included in the above Units #1 and #2 analysis.

Notable omissions and anomalies in the data received were:

- The FD fan inlet/outlet pressures are not available
 - Assumptions were required to estimate FD fan pressure rise
- The #6 Feedwater heater water inlet temperature reading is not valid.
 - Assumptions were required to calculate reheater steam flow
- The PI reported superheater spraywater flow was implausible
 - Assumptions were required in Stage 2 (Kf) analysis

5.3.2 Turbine Generator Heat Rate

The original design and the current turbine heat rates for the Oct 22 and Jan 4 data are shown in Table 7.

Holyrood Units #1,2,3

TURBINE – O	GENERATOR	HEAT RATE DESIGN vs CURREN	Г	
		Design	Oct 22,	Jan 4,
		(Ref AG 1403-200-M001 Rev2	2017	2018
Gross Output	MW	150	149.2	128.2
Turbine Heat Rate Expected	Btu/kwhr	7621	7623	7665
Turbine Heat Rate (Adjusted for	Btu/kwhr	-	7597	7720
off design boiler boundary				
Conditions i.e. hot RH Temp)				
Turbine Heat Rate Actual	Btu/kwhr	-	8188	8260
Required Boiler Output To	Btu/hr/1	1143	1222	1059
Turbine	0^6			
Increase in Turbine Heat Rate	%	-	7.4	7.8

Table 7 Turbine - Generator Heat Rate Design vs Current Unit #3

The current heat rates are significantly higher than design, increasing the required boiler output per MW generated.

Note that the boiler heat output also includes other loads such as Aux steam to other units/building heat, etc. and output to blowdown. These outputs were not included in the turbine heat rate calculations. The boiler output calculations assumed that:

- No aux steam flowed into or out of the Unit 3 boiler envelope
- The aux steam extracted from the boiler was used within the boiler envelope
- (Predominantly steam coil air heaters, fuel atomization and fuel oil heating)
- No sootblowing steam consumption
- Boiler blowdown flow 1% of main steam flow

Steam flows for calculation of turbine heat input were determined as follows:

- HP Steam flow to turbine = (Feed Water Flow) (Blowdown Flow) (Aux Steamflow)
- Reheater Flow = (HP Steam flow) (Design HP Turbine Leakages) (#6 Heater Steam Extraction Steam Flow calc. by heat balance)

HP steam flow calculated from feed water flow is generally more accurate than the commonly used steam flow inferred from HP turbine inlet pressure, particularly for older turbines.

5.3.3 Deviations from Design Turbine – Boiler Boundary Conditions

The operating turbine heat rates illustrated above are affected by deviations in boiler operating conditions from design. These conditions are:

- Main steam temperature / pressure
- Hot reheat temperature
- Superheater and reheater sprayflows
- Boiler blowdown and aux steam flows
- Reheater pressure drop

The magnitude of these corrections is relatively small. The corrections are indicated in Table 8 were made using heat rate correction curves for a Hitachi turbine of similar vintage, size, and design conditions.

	HEA	T RATE COR	RECTIONS			
DEVIATIONS FROM I	DESIGN TU	RBINE – BOI	LER BOUNDA	RY CONDITIC	ONS EFFECT	
			Oct 22	2, 2017	Jan 4,	2018
Unit Output	MW	150	14	9.2	128	3.2
		Design	Measured	Heat Rate	Measured	Heat Rate
				Correction		Correction
Main Steam Temperature	F	1000	1000	1.0000	1000.4	0.9999
Main Steam Pressure	Psig	1800	1799	1.0000	1798	1.0000
Hot Reheat Temperature	F	1000	1005.5	0.9992	941	1.0089
Superheat Spray flow	Lb/hr	0	48000*	1.0022	48000*	1.0026
Reheat Spray flow	Lb/hr	0	2140	1.0011	2196	1.0013
Boiler Blowdown & Aux Steam	Lb/hr	0	16500	0.9942	12700	0.9945
Flows						
Overall Turbine Heat Rate	-	1.0000	-	0.99660	-	1.0071
Correction Due to Deviations in	(%)	(0)		-0.3%		0.7%
Boiler Boundary Conditions						
(Positive=Increased HR)						
*Estimated (Plant superheater :	sprav flow	/ measure	ment is imr	lausible)		

Table 8 Heat Rate Corrections Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Holyrood Units #1,2,3

A further correction for reheater pressure drop is available but was not applied since total reheat pressure drop (including piping) was not measured. This correction is normally very small. The correction for Condenser vacuum was also not applied. This correction can be substantial, but was not considered as it is outside of the scope of this study.

The small boundary condition corrections here indicate that the majority of the increased T-G heat rate is due to T-G inefficiencies. In general aging steam turbines experience heat rate increases due to high condenser pressure, higher than design turbine valve and gland leakages, depositions on and wear of turbine blades. B&W has seen heat rate increases similar to those indicated in the above table on T-G units of similar vintage and size.

5.3.4 Fuel Oil Flow

Although inaccuracies exist in measurements of the fuel oil flow to the unit and there are variations in fuel heating value, fuel oil flow relative to unit MW load is an indicator of unit heat rate. Table 9 shows the expected, calculated, and measured fuel oil flows for the Oct 22 and Jan 4 data. Calculated oil flows are based on 18450 Btu/Lb. The calculated oil flows are within 3% of the measured oil flows.

Unit Output	MW	149.2	128.2
		(Oct 22, 2017)	(Jan4, 2018)
Expected Oil Flow	Lbs/hr	69 <i>,</i> 579,	60,114
(Design HHV, HR and Blr Efficiency)			
Calculated Oil Flow	Lbs/hr	77,367	67,138
Calculated/Expected Oil Flow	-	1.11	1.12
Plant Measured Oil Flow	Lbs/hr	79,276	67,199
Oil HHV	Btu/lb	18,278-18,472 (2017 Deliveries)

Table 9 Fuel Oil Flow Calculated/Expected Unit #3

5.3.5 Boiler Efficiency and Air Heater Leakage

Boiler Efficiency is predominantly driven by excess air and the difference between inlet air temperature and outlet flue gas temperature (Corrected for no a/h leakage i.e. undiluted). Other factors such as atomizing steam flow, radiation loss, and unburned carbon loss are small for oil fired units. The key parameters are illustrated in Table 10 with reference to the original design conditions.

BOILER	EFFICIENCY	AND AIR HEATER LEAKAGE		
		Design (B&W PD Sheet	Oct 22,	Jan 4,
		C/7391, MCR Load)	2017	2018
Excess air To Burners	%	3	5	7
Air Inlet Temperature	F	80	45	61
Gas Temperature Entering A/H	F	662	747	737
Stack Gas Temperature (Diluted)	F	280	318	324
Air Heater Leakage (% of Inlet Gas	%	9.5	22.2	27.5
Flow)				
Stack Gas Temperature (Corrected	F	297	364	376
for No Leakage)				
Boiler Efficiency	%	88.59	86.45	86.46
Air Heater Leakage Flow	Lb/hr	103,000	267,000	305,000

Table 10 Boiler Efficiency and Air Heater Leakage (Unit #3)

The boiler efficiency is approximately 2% lower than design, mainly due to the higher than design corrected air heater outlet temperature and the lower than design air inlet temperature. The reduction in efficiency combined with the higher than design excess air and much higher than design air heater leakage increases the required FD fan air flows significantly. These increases compound with the additional air flow required by the increased T-G heat rate discussed above.

5.3.6 FD Fan Duty Requirements – Design vs Current

5.3.6.1 Required Air Flows

The required boiler airflows to achieve a 150 MW unit output at current operating conditions are summarized in Table 11. The required air flow leaving the air heater is calculated based on TG heat rate, boiler efficiency, and excess air from the Oct 22 (149.2 MW) site data. The required air flow entering the air heater was calculated based on both the Oct 22 and Jan 4 data to illustrate the effect of the increased air heater leakage resulting from the higher Jan 4 air heater air/gas side differential pressure.

FD FAN AIRFLOW	REQUIREM	ENTS – DESIGN vs CUF	RENT OPERATION (1	50 MW)
		Design (MCR, 150	Oct 22, 2017	Jan 4, 2018
		MW)		(Additional AH
				Leakage)
Original Design Airflow	Lb/hr	1,029,700	-	-
Leaving AH				
Additional AirFlow due to	%	-	7	.4
TG Heat Rate Increases				
Additional AirFlow due to	%	-	2	.5
Boiler Efficiency Loss				
Additional AirFlow due to	%	-	2	.0
higher Excess Air				
Total Additional AirFlow to	%	-	12	2.3
Burners (Entering AHs)				
Required Air Flow Leaving	Lb/hr	1,029,700	1,150	5,000
Air Heaters				
Additional Flow Air heater	%	10	23.1	26.4
leakage (% Air Leaving)				
Required AirFLow Entering	Lb/hr	1,132,700	1,423,000	1,461,000
Air Heaters				
Required Airflow Entering	Lb/hr/fan		715,500	753,000
Air Heaters / Fan				
% Increase in FD Fan Outlet	%		25.6	29.0
Airflow vs 150 MW Design				

Table 11 FD Fan Airflow Requirements - Design vs Current (Unit #3)

Holyrood Units #1,2,3

5.3.6.2 Required FD Fan Pressure Rise

The boiler air and flue gas side pressure drops during Oct 22 and Jan 4 operation vs the design pressure drops are summarized in Table 12. Pressure drops are higher than design due to the combination of increased required air and flue gas flow along with increased resistance. Due to the assumptions made regarding air heater and steam coil air heater air-side pressure drop, the pressure drop summary should be considered 'approximate only' until actual FD fan pressure rises can be confirmed.

The pressure drop in the FD fan inlet ducts is not measured thus it has been assumed unchanged from original design. The FD fan outlet pressures are also not available. This was estimated by adding the Ljungström air heater air-side pressure drop (proration of the design pressure drop by the ratio of measured/design gas side pressure drop), and an estimated steam coil air heater pressure drop (estimated at two times a 'typical' steam coil since the steam coils are reportedly fouled/damaged).

AIR AND GAS SID P	RESSURE DF	ROPS – DESIGN VS OP	ERATING	
		Design	Oct 22,	Jan 4, 2018
		150 MW	2017	(Prorate to
			(149.2	150 MW)
			MW)	
Airflow To burners	Lb/hr	1,029,700	1,156,000	1,156,000
Air Heater Leakage	Lb/hr	103,000	267,000	305,000
Airflow Leaving FD Fans (Inc AH	Lb/hr	1,132,700	1,423,000	1,461,000
Leakage)				
Draft loss Burners	in Wg	4.9	7.2	9.9
Draft loss Furn and CP	in Wg	6.3	9.2	6.6
Draft Loss AH Gas Side	in Wg	3.1	8.6	11.4
Draft Loss AH Air Side	in Wg	2.4	6.6	8.8
(Prorate from Gas Side)				
Draft Loss SCAH (Est)	in Wg	1.7	6.4	6.8
Ducts Draft loss	in Wg	5.4	6.8	6.8
(Prorate from Design)				
Flues Draft Loss	in Wg	2.1	2.6	2.6
(Prorate from Design)				
Total Draft Losses	in Wg	25.7	47.3	52.8

Table 12 Fd Fan Pressure Rise - Design Vs Operating Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study – Unit Capacity Limitations

Holyrood Units #1,2,3

The largest contributor to additional fan pressure rise duty is the additional flow associated with the combination of increased turbine heat rate, higher than design excess air, and reduced boiler efficiency. The additional pressure drop in the regenerative air heaters and the steam coil air heater are the next most significant contributor to additional fan loading.

5.3.7 FD Fan Capacity Discussion

The combination of turbine heat rate increases, boiler efficiency reduction, air heater leakage, and higher than design combustion system excess air increase the required airflows as discussed above. The increased flows inherently increase the system pressure drop by approximately 26% relative to the original design. Pressure drop increases of a similar magnitude are observed due to changes in flow path resistance, such as dampers throttled, burner air register settings, boiler convection pass and air heater fouling. The expected performance for each fan as operating on Jan 4, 2018 is illustrated in Figures 10 and 11. The curves are based on the original Sheldons Eng. fan curve (Ref Appendix 8.5), corrected for inlet air density and fan RPM.

Figure 11 West FD Fan Jan 4/18 Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study – Unit Capacity Limitations

Holyrood Units #1,2,3

Under the Jan. 4, 2018 operating conditions, the FD fans would have been capable of delivering the required air flow to the unit if operated at the rated 1150 RPM and 100 % VIV opening. On that day, the fan speed was limited to approximately 1080 RPM and the VIV's were in the 54%/70% east/west position with the unit at 128 MW. The required fan duty to make 150 MW per the Jan 4 data is illustrated in Figure 12. This curve is based on the original Sheldons fan curve. A correction was required for lower than design inlet air temperature (Sheldons Fan Curve temperature basis was 105 F).

Holyrood Units #1,2,3

5.3.8 Air Heater 'ARVOS' basket replacement

A proposal from ARVOS for replacement air heater hot end heating elements was reviewed from the standpoint of the restoration of maximum boiler load capability and FD fan capacity. The expected performance as received from ARVOS for the new elements if installed with the existing cold end elements (assumed to be in 'as new' condition from a heat transfer / pressure drop standpoint) is included in Appendix 8.6. Table 13 outlines the required fan performance with the new heating elements installed. The existing FD fans will easily deliver sufficient airflow for 150 MW operation at approximately 960 RPM and 60-65 % average VIV opening.

Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 51 of 90 Babcock & Wilcox PGG Canada

GT-NLH-005, Attachment 1 Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

FAN PERFORM	ANCE SUM	IMARY - NEW AIR HEA	TER HOT END	BASKETS / SEAL	s	
					New Hot End	New Hot End
			10/22/2017	1/4/2018	Baskets and Seals	Baskets, Old Seals
			150 MW	128 MW	150 MW	150 MW
Flows Mlb/hr	(Oct Data U	Init @ 150 Mw)				
Ai	ir Entering A	ЧΗ	1,390,100	1,312,800	1,279,870	1,354,177
Le	eakage Air		267,000	305,000	156,770	231,077
Ai	ir Leaving A	ir Heater	1,123,100	1,007,800	1,123,100	1,123,100
Temperatures	s F					
Ai	ir Entering F	D Fan	45	61	45	45
Ai	ir Entering A	Air Heater	99	128	128	128
Pressures In V	NG					
FC	D Fan Pressu	ure Rise	45.2	40.7	34.4	34.9
A	H Outlet Ple	enum	27.4	26.9	20.9	20.9
Ai	ir Heater Ai	r Side Pressure Drop	6.6	7.1	1.9	1.9
Ai	ir Heater Ho	t End Differential	22.4	18.0	22.4	22.4
Ai	ir Heater Ga	s Side Differential	8.6	9.2	3.2	3.2
Fan Performa	nce					
FC) Fan Volum	ne Flow ACFM/Fan	147,816	143,842	135,991	143,886
FC	D Fan RPM		1018	1062	960	960
FC	O Fan VIV %		54/70	54/70	60.0	65.0
He	orsepower/	Fan (Predicted)	867	940	727	772

Table 13 Arvos Replacement Hot End Heating Elements Performance

Note the following:

- Combustion air flows requirements are based on boiler operating data Oct 22, 2017 @ -150 MW
 - No adjustments were made for improved efficiency (Which should be achieved with AH basket replacement). This will result in a conservative capacity estimate
- Air heater leakage calculated two ways to assist in evaluation value in new seals
 - Without new seals, air heater leakage adjusted from Oct 22, 2017 calculated leakage for reduced differential pressures with the new baskets
 - With new seals, air leakage adjusted from ARVOS predicted data based on higher hot end air heater differential pressure
- FD Fan performance is calculated based on 'typical' current operating VIV openings, Fan RPM selected to match required pressure rise

- Air Heater Outlet plenum pressure setpoint reduced due to reduced air heater pressure drop
- There is a savings in fan power as shown (estimated) in Table 13.

Figure 13 illustrates the estimated fan operating points @ 960 RPM with the proposed air heater upgrades.

5.4 Heating Surface Effectiveness (Kf Study)

Heating surface effectiveness factors (Kf's) were calculated by B&W program P140. Table 14 summarizes the results.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Kf a	Ind FEGT Sum	nmary, Unit #3	
Date	Expected	Oct 22, 2017	Jan 4, 2018
Unit Load	150	150	128
Air Heater Kf	1.0	0.91	0.88
Economizer Kf	1.0	0.91	0.98
Superheater Kf	1.0	0.90	0.75
(Avg Prim+Sec)*			
Reheater Kf	1.0	0.96	0.71
FEGT(°F)	2482	2482	2394
(Expected/Actual)		2528	2476
Main Steam	1000	1000	1000
Temp (Deg F)			
Hot Reheat Temp	1000	1006	941
(Deg F)			

Table 14 Kf and FEGT Summary Unit #3

*Superheater Kf Estimated (Spraywater Flow Not Available)

The Kf analysis shows that all surfaces are underperforming from a heat transfer effectiveness standpoint. The effectiveness of the superheater and reheater surfaces dropped significantly during the Oct 2017 – Jan 2018 time period. The air heater and economizer Kf's, while below expected, did not change significantly during that time period; this is somewhat unexpected for the air heater given the large increase in pressure drop seen during this time. One possible explanation may be that localized depositions are blocking flow in a relatively small portion of the depth of the heating surfaces. Flow patterns may also have changed if the two air heaters are not fouling at the same rate, leading to an air and flow 'shift' between them. This could affect the indication of stack temperature from the plant instrumentation.

Holyrood Units #1,2,3

As discussed above, the major deficiencies in the Unit #2 performance as they affect efficiency as based on the January 2018 data are the higher than expected Turbine-Generator heat rate and reheat cleanliness / hot reheat temperature. The low heat transfer effectiveness of the superheater and reheater surfaces is not a major factor in terms of boiler efficiency due to the relatively good thermal performance of the air heaters and economizers. The significant reduction in superheater and reheater Kf values should be investigated i.e. the surfaces should be inspected for cleanliness. Increases in sootblowing frequency and/or blowing pressures may be necessary to maintain cleanliness of these surfaces.

Figure 14 illustrates the additional unit output that that would be expected if the boiler and T-G inefficiencies are corrected.

6 FUEL OIL RELATED ISSUES (COMMON UNITS #1,2,3)

Fuel oil is supplied to the three units from common storage tanks. Oil is pumped and heated to the required pressure and temperature for burner atomization by independent pumping / heating sets for each unit.

The fuel oil analysis data in the NLH supplied spreadsheet database was reviewed. From a combustion and heating value standpoint, the fuel analysis in recent years is very close to the Unit #3 original design fuel. Combustion calculations were therefore based on the Unit #3 design fuel. The Sulphur content has been consistently below 1% since early 2009 per Figure 15. The Vanadium (V2O) content dropped significantly in late 2005 and is currently consistently less than 50 ppm per Figure 16. Overall the fuels currently burned are better than 'typical' Bunker fuels with lower than normal levels of both Sulphur and Vanadium.

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 56 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

Figure 17 Fuel Oil Vanadium PPM (1995-2017)

Interactions of Vanadium, SO_2 / SO_3 , and unburned carbon in the products of combustion lead to air heater fouling. These deposits can block the flue gas passages on air heater heating surfaces, increasing pressure drop and reducing heat transfer effectiveness. Finned tube economizers may also be affected during start-up and very low load operation. Unburned carbon is the largest component of these deposits and it is typically highest during start-up and low load operation.

Low air heater metal temperature as indicated by the Average Cold End Temperatures (ACET) increase the condensation rate of SO3 on the baskets and increase the tendency for deposits to form. Air heater metal temperatures are also lowest at low loads if sufficient inlet air preheating is not supplied. It is thus imperative that air heater ACET is maintained at all loads and operating conditions.

The regenerative air heaters of all three units and the finned tube economizers of units #1 and #2 are experiencing significantly higher than design pressure drops.

6.1 Atomizing Temperature

The viscosity of oils currently utilized at Holyrood range between 50 and 189 SFS (@ 122 F). Sufficient fuel oil heating must be supplied to ensure proper atomization and complete combustion.

The required atomizing temperature for Units #1 and #2 atomizers as a function of SFS viscosity is shown in Figure 17 (Ref. Alstom info supplied to B&W by NLH). According to site reports, atomizing temperatures are currently approximately 187 F (86 C)

Figure 18 Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2

Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2

The Unit #3 B&W atomizers are designed for 135 SSU viscosity at the burners. Figures 18 and 19 illustrates the required atomizing temperature as a function of the fuel oil SFS @122 F to achieve the required atomizing viscosity.

Figure 19 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Celsius)

Figure 20 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Fahrenheit)

To accommodate fuel oil viscosities up to 200 SFS (@122 F):

For Units 1 & 2, an atomizing temperature sufficient to achieve 100 SSU Is recommended or in the absence of viscosity data 110 C (230 F)

For Unit #3, an atomizing temperature sufficient to achieve 135 SSU Is recommended or in the absence of viscosity data 225 F.

Low atomizing temperature leads to incomplete combustion and increased unburned carbon in fly ash. This ash combined with SO3 condensate in low temperature regions of the boiler lead to corrosion and fouling.

6.2 Fuel Oil Additives

Fuel oil additives reduce the potential for high temperature corrosion and low temperature fouling due to the fuel oil Vanadium. These issues are linked to the catalysing effect of Vanadium on high temperature tube metal corrosion and on the conversion of SO2 to SO3. MgO added to the fuel stream is effective in reducing these effects. B&W recommends a minimum dosing rate of 1 lb MgO per lb V2O in the fuel oil to reduce the potential for both corrosion and fouling. Figure 20 illustrates this recommended dosing rate per unit MWhr output based on an average unit heat rate of 9807 Btu/Kwhr. If a higher dosage rate is recommended by the supplier of the additive due to the specific composition of his additive package, the higher recommended dosage rate should be implemented.

Figure 21 B&W Recommended MgO Dosing Rate Ib/Mwhr

NLH discontinued the use of the plant fuel oil additive system in 2014. The decision to take the system out of service may have been based on the improved fuel quality in 2006 and 2009. Load limitations started to occur in 2015 and 2016 on Unit #1 and #2 respectively and 2017 on Unit #3. No significant changes are seen in the fuel analysis between 2009 and 2015. With no other apparent changes in operating conditions, the MgO system was most likely reducing the tendency towards fouling of the air heater surfaces. It is recommended that the MgO dosing system is returned to service.

Vendors of oil additive packages often supply and recommend fuel oil additives which are designed to improve combustion. B&W has not seen any benefit to using these 'combustion improvers' in utility boilers as it relates to fouling or ash 'stickiness'.

6.3 Air Heater Differential Trend – Oct 22, 2017 to Jan 4, 2018 (Unit #3)

Unit #3 experienced a relatively rapid increase in air heater pressure drop associated with a reduction in load capability between Oct 22, 2017 and Jan 4, 2018. A trend of air heater differential vs. time based on Unit #3 PI operating data on an hourly basis was developed to identify if low load operation and/or low ACET was leading to increased fouling. An 'index' of air heater cleanliness was calculated i.e. (Air Heater Differential)/(Total Air Flow). If no further pluggage is occurring this index would be a constant over time. The index is plotted below In Figure 21. A plot of the unit MW output follows in Figure 22, and Figure 23 illustrates the air heater Average Cold End Temperatures (ACET) trend. Although these trends are based on Unit #3 data, they are also relevant to the similar air heaters of Units #1 and #2.

Holyrood Units #1,2,3

Figure 22 Air Heater Differential Index - Unit 3

Figure 23 Unit 3 MW Output Oct 2017- Jan 2018

Figure 24 Air Heater ACET Oct 2017- Jan 2018 Unit 3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Gaps in the chart data correspond to times when unit was off line or the differential pressure measurement was not available. The most rapid rise in differential index was during the November operating time frame. During this time period the unit operated for significant periods at loads less than 100 MW. The ACET for the west air heater was significantly lower than the east side, often dropping to as low as 80 C (176 F). The B&W recommended minimum ACET for regenerative air heaters on oil fired units is 190 F (88C). Although the operating ACET was not significantly lower than recommended there is a correlation between low ACET and increased draft loss.

Air heater differential pressure measurements were not available from mid December until a short shutdown on December 31 as the economizer gas outlet gas pressure transmitter appeared to be malfunctioning (Pegged?). During this time period, load dropped rapidly and the ACET's were at even lower levels. This further suggests that low ACET is leading to high rates of air heater pressure drop increase. Note that the air heater differential did not increase during the period from Nov 21 to mid December when the ACET was maintained above 100 C and unit load was above 140 MW. Based on this, a minimum 100 C (212 F) ACET target is recommended.

Figure 21 shows a significant drop in the differential index on or about November 20 and another on December 31, suggesting that the air heaters were washed at that time.

6.4 Heating Surface Removal

Removal of boiler heating surfaces (economizer or heater surfaces) which are leading to increased pressure drop would reduce furnace pressures and reduce FD fan loading. Surface removal can have multiple negative effects on boiler performance and mechanical integrity as follows:

6.4.1 Air Heater Heating Surface Removal

If removing just the 'hot end' elements, the air heater vender predicted performance with only cold end baskets installed would be required to evaluate the effect on boiler performance and efficiency. The air heater vendor would need to advise the effect if the air heaters structural integrity is suitable for the higher outlet gas temperatures under these conditions and any effect on air heater leakage rates.

Other problems that may occur if removing only the hot end baskets are as follows:

- Reduced combustion air temperature leading to unacceptable combustion i.e. high CO, high unburned carbon loss, and a visible plume. (Likely at part loads, possible for high loads)

- High flue gas outlet temperatures leading to possible structural damage to the air heater, downstream expansion joints, flues, and stack. (Likely at high loads, possibly at low loads)

- A significant drop in boiler efficiency (Certainly - all loads)

- Reheat spray flow required at high loads (Likely at high loads)

- Overheating of superheater and reheater tube metals, particularly primary outlets due to increased superheat sprayflow and high fluegas/steam flow ratio (Possibly - all loads)

The removal of hot end air heater baskets for continued operation is therefore not recommended.

Complete removal of air heater surfaces would certainly lead to very poor combustion and very likely structural damage of the flues / expansion joints / stack and thus would not be recommended.

6.4.2 Economizer Heating Surface Removal

Limited removal of economizer surfaces which are blocked by fouling may be a viable option to reduce pressure drop if cleaning these surfaces is not possible. Any removal of economizer heating surfaces must consider the following:

- Increases in flue gas temperature to the air heaters which could lead to structural damage to air heaters and air heater inlet gas flues/expansion joints.
- Increases in air heater outlet gas temperature possibly leading to similar structural problems discussed for air heater surface removal.
- Exceedance of maximum stack temperature limitations structurally or environmentally
- Combustion air temperature increases, possibly beyond the temperature limitations of structural design and expansion joints in the ducts and burners.
- Higher levels of s/h spray and possible overheating of superheater tube metallurgy
- Possible negative effects on boiler natural circulation issues due to low feedwater temperature to drum (Would require review by boiler designer)

A thorough 'survey' of where the current areas of blockage are located in both banks would be required to estimate performance and performance predictions of the remaining surface would be 'estimates' at best. The path forward would be dependent on the results and accuracy of the survey.

If the blockages are primarily in the bottom bank simplest would be removal of entire bank (After investigating the constraints listed above). If the blockage is in the top bank, and that bank is removed the temperature limitations of the bottom bank supports would also need to be understood.

Considering the above issues, partial removal of economizer surfaces should be considered as a last resort solution. It would also require a considerable inspection, engineering (including pressure part modifications), and construction effort.

Complete removal of economizer surfaces would certainly lead to boiler structural and operational problems and is thus not recommended.

Holyrood Units #1,2,3

7 WARRANTY / LIMITATION OF LIABILITY

B&W warrants that advice and consultation services and engineering studies will be performed in a manner consistent with generally accepted industry standards and practices. The sole remedy is that any portion of the services furnished to Purchaser which is shown not to have been so performed shall be corrected or re-performed to the standards in effect at the time of original performance at B&W expense; provided all necessary information and access requested by B&W is given to substantiate such claim, and further provided that such nonconformance is detected by Purchaser within ninety (90) days following completion of that portion of the services, and B&W is immediately notified in writing.

The foregoing shall not apply to services performed under the direct supervision of Purchaser. B&W shall not be responsible for suitability or performance of work done by others or for loss or expense arising from same, unless it is specifically ordered by B&W.

There is no warranty or representation, express or implied, with respect to the accuracy, completeness or usefulness of the information contained in any report, or that the use of any report contents may not infringe privately-owned rights. Moreover, B&W will assume no liability for any direct or indirect damages, however caused, including (without limitation) by professional negligence or fundamental breach of contract, resulting from reliance upon or application of the contents of the report by any person.

IN CONSIDERATION OF THE ABOVE EXPRESS WARRANTY EXTENDED BY B&W, ALL OTHER WARRANTIES OR CONDITIONS, EITHER EXPRESS OR IMPLIED WHETHER ARISING AT LAW, IN EQUITY, BY STATUTE, CUSTOM OF TRADE, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXCLUDED.

End of Report

8 APPENDICES

8.1 Alstom Letter Fritz Vogel – NLH Aug 3, 2000 "Predicted Performance Data For Boiler #1 & 2

-		AUG 7 2000
ABB A	LSTOM	
PO	WER	2000 Metric
Customer Servic Aug.03.2000	es Division	
Newfoundlan P.O.Box 29 Holyrood, NF A0A 2R0	d and Labrador Hydro	
Attention:	Herb Dowden-George Moore-Ray Ross Mike Taylor-Alonzo Pollard-Bob Garlan Cc Terry LeDrew	siter-John Mallam-Jerry Goulding d
Dear Gentlen	nen:	
Deference	Bradistad Darformance Data for Bailer	
Our performa	nce design engineer has completed the llowing:	#1 & 2 review of the performance data and attached you
The data are will find the fo The data are way reflecting Our engineer while operatir To assure tha in every avail	The dicted Performance Data for Bolie A nce design engineer has completed the llowing: Two (2) Tables of Performance Data in One (1) Graph indicating the recommen based upon the same parameters as a Station Data as the basis for recalculation ing department emphasizes the fact that ig at less then Control Load i.e. 70 % of M at these information winds up at the appra able instruction/operation instruction man	#1 & 2 review of the performance data and attached you metric units ided Burner Tilt while operating the boiler applied during the upgrade review and are in no on. the burner tilt must be kept horizontal at all times ACR. opriate location I suggest that copies be included ual.
Our performa will find the fo The data are way reflecting Our engineer while operatir To assure tha in every avail Should you fi with John Ada	nce design engineer has completed the llowing: Two (2) Tables of Performance Data in One (1) Graph indicating the recommer based upon the same parameters as a Station Data as the basis for recalculation ing department emphasizes the fact that ig at less then Control Load i.e. 70 % of M at these information winds up at the appr able instruction/operation instruction man and any discrepancies or have questions ams or me.	#1 & 2 review of the performance data and attached you metric units aded Burner Tilt while operating the boiler applied during the upgrade review and are in no on. the burner tilt must be kept horizontal at all times ACR. opriate location I suggest that copies be included ual. with regard to the data feel free to get in touch

Newfoundland and Labrador Hydro (NLH) Holyrood Station

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 69 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

•		175	12 ¹⁸	131.25		
" L		1	175	1		
Load	1 %	MCR	vwo	75%	50%	25%
STEAM						
Steam Generated	ka/s	147.1	154.4	110.3	73.5	36.8
Reheater Flow	ka/s	131.7	138.1	99.5	67.0	33.9
Operating Pressures	kPa(g)					
Drum	1	14162	14286	13700	13287	1302
Primary SH Outlet		13976	14080	13590	13238	1301
Final SH Inlet		13907	14004	13550	13219	1300
Final SH Outlet		13480	13542	13300	13094	1296
Reheater Inlet		3399	3572	2558	1696	814
Reheater Outlet		3185	3337	2386	1579	752
Operating Temperatures	°C				· .	
Primary SH Outlet	+	377	376	377	365	353
Final SH Inlet	+	370	376	363	365	35:
Final SH Outlet	1	541	541	541	541	53
Reheater Inlet		353	358	329	308	28
Reheater Outlet		541	539	528	495	468
Design Pressures	kPa(g)					
Waterwalls & Headers	(j/			15203		A
Superheater				15203		
Reheater				4254		
BOILER FEEDWATER						1
Economizer flow	ka/s	147.6	157.3	108.9	75.5	38.
Blowdown	kg/s	1.47	1.54	1.10	0.74	0.3
Operating Pressures	kPa(g)					1
At Economizer Inlet (incl. static)		14348	14480	13845	13390	131
Economizer Outlet		14162	14286	13700	13287	130
Operating Temperatures	°C					
Economizer Inlet	+	240	243	225	205	17/
Economizer Outlet		302	303	294	270	24
	kPa(g)					1
Economizer				15548		1
DESUPERHEATING WATER						1
Source	- <u> </u> 		18	Boiler Feed Pum	p	
Pressure at Pump Discharge	kPa(a)	16286	16286	16286	16286	162
Temperature	°C	149	151	140	127	10
SH Spray Flow (Operating)	ka/s	2.3	0.0	3.8	0.0	0.0
SH Spray Flow (Design)	ka/s			13.86		· · · · · ·
RH Spray Flow (Operating)	ka/s	0.0	0.0	0.0	0.0	0.0
RH Spray Flow (Design)	ka/s		•	5.27		
FILLE GAS			1			1
Flow	ka/s		·			1
Through Boiler - Economizer		159.8	166.7	134.6	94.9	53.
Air Heater Inlet		159.8	166.7	134.6	94.9	53.
Air Heater Outlet (corrected)		173.8	181.2	146.4	104.6	57.
Operating Drafte	Pa(n)					1
Furnace Outlet		2816	3063	1996	997	30
Final SH Outlet		2741	2982	1943	970	30
RH Outlet		2567	2792	1820	909	28
Economizer Outlet	- <u> </u> 	1595	1735	1131	566	17
			252	220	117	26

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 70 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

• • • ·

Holyrood Units #1,2,3

Load	%	MCR	VWO	75%	50%	25%
Operating Temperatures	°C					
Furnace Outlet		1421	1407	1333	1177	1008
Final SH Outlet		1124	1122	1051	919	764
Primary SH Outlet		570	575	536	475	407
RH Outlet	1	827	831	768	665	543
Economizer Outlet		323	327	299	262	214
Air Heater Outlet (uncorrected)		172	174	164	151	136
Air Heater Outlet (corrected)		163	165	156	144	133
Gas Velocities (Average)	m/sec					
SH Platen 1 - 12" transverse pitch		16.9	17.5	13.5	8.6	4.2
SH Platen 2 - 12" transverse pitch		16.5	17.1	13.1	8.4	4.1
SH Finish - 12" transverse pitch		15.1	15.7	12.0	7.7	3.7
RH Finish - 6" transverse pitch		17.1	17.8	13.6	8.6	4.2
RH Inlet - 6" transverse pitch		16.4	17.2	13.1	8.3	4.0
Primary SH - 4" transverse pitch		17.1	18.0	13.7	8.8	4.4
Economizer		12.5	13.2	10.1	6.6	3.4
AIR	1					
Flow	kg/s					
Air Heater Inlet		158.4	165.1	134.1	96.1	53.1
Air Heater Outlet (corrected)		144.4	150.6	122.3	86.5	48.5
Air to Burners	1	144.4	150.6	122.3	86.5	48.5
Operating Pressures	Pa(g)					
Air Heater Inlet		6006	6417	4642	2977	1262
Air Heater Outlet	1 1	5158	5495	4041	2678	1169
Windbox	11	4137	4384	3317	2317	1057
Operating Temperatures	°C					
Air Heater Inlet	+	54	52	63	76	90
Air Heater Outlet	+	233	234	222	204	179
Excess Air	%					
Leaving Furnace		5	5	15	20	30
Leaving Economizer		5	5	15	20	30
FUEL BURNT						
No. Burners in Service	++	12	12	12	8	8
#6 Fuel Oil (Total)	kg/s	10.99	11.46	8.50	5.76	2.98
#6 Fuel Oil (Per Burner)	kg/s	0.92	0.96	0.71	0.72	0.37
Burner Tilts	+/-Deg	+9	0	+15	0	0
ATOMIZING STEAM						
No. Burners in Service		12	12	12	8	8
Flow (Total)	kg/s	0.961	0.957	0.998	0.680	0.736
Pressure	kPa(g)	724	724	724	724	724
Temperature	<u>°C</u>	193	193	193	193	193
HEAT BALANCE	1 %					
Dry Gas Loss	++	3.87	4	3.62	2.8	1.86
Moisture in Fuel	<u> </u>	0	0	0	0	0
Moisture from Hydrogen	++	4.83	4.85	4.73	4.58	4.42
Moisture in Air	++	0.09	0.1	0.09	0.07	0.05
Carbon Loss	++	0	0	0	0	0
Radiation Loss	+	0.2	0.2	0.28	0.4	0.85
Unaccounted Loss	+	0.5	0.5	0.5	0.5	0.5
Manufacturers Margin	+	0.5	0.5	0.5	0.5	0.5
Total Losses	+1	9,99	10.15	9.72	8.85	8.18
	+	00.04	90.95	00.28	01 15	01.87
GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 71 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

8.2 Turbine Heat Balance Conditions Units #1 and #2 Uprated 1988

B&W Ref. 312C

Holyrood Units #1,2,3

VWO at 1875 psig 1 12 4 NEWERLINDI AND TB. NO. 940310+940311 8/5/88 TIR# 10236-893A, UPRATE 1875G-1000/1000F-1.5 IN. HGA GROSS HEAT RATE = 7991 BTU/KWHR GENERATOR OUTPUT = 181198 KW -- RATED 194445 KVA, .90 P.F., CONV COOLED GENERATOR LOSS = 1864 KW AT .93 P.F., 45 PSIG H2, MECH LOSS = 609 KW STEAM CONDITIONS 1975 PSIG, 1000/1000 F, 1.5 IN HEA 3600 RPM F LB/HR P PSIA T F H BTU/LB HEAT SOURCE STEAM FROM BOILER 1225560 1890. 1000.0 1477.70 BLOWDOWN Ō WATER TO ATTEMPERATOR Õ 288.54 FEEDWATER TO BOILER 1225560 470.2 453.82 STEAM FROM REHEATER 1095677 488.6 1520.66 STEAM TO REHEATER 1095677 681.3 1344.42 542.9 TURBINE STEAM TO THROTTLE 1225560 1890. 1000.0 1477.70 VALVE STEM LEAKAGE TO H.P. TURB. EXHAUST TU H.P. TOND. LINE TO STEAM SEAL REG. 777 ENTERING 1-R CONTROL STAGE ND. 1 1223130 ENTERING 1-R CONTROL STAGE ND. 2 1204254 1431 542.9 1477.70 16.70 1477.70 1856. 1477.70 1507. 1456.74 3-R PACKING LEAK-OFF TO HEATER NO. 4 EXTR. 6794 155.9 1344.26 SEAL FLOW TO STEAM SEAL REG. 2952 16.70 1344.26 VENT FLOW TO GLAND SEAL COND. 182 1344.26 BEFORE PRESSURE DROP 548.4 1194326 1344.26 BEFORE FLOW ENTRY 1194326 542.9 681.0 1344.26 488.6 BEFORE PRESSURE DROP 1520.66 1095677 BEFORE ENTRY OF LEAKAGE 1095677 478.9 1520.66 1-R PACKING FLOW FROM STAGE 1 SHELL 18876 ENTERING DIAPHRAGM STAGE NO. 11 1114553 ENTERING DIAPHRAGM STAGE NO. 14 1064554 INTERING DIAPHRAGM STAGE NO. 16 1034026 1-R PACKING 1456.74 1519.57 1507. 478.9 1440.09 259.5 155.9 1380.28 2-R PACKING SEAL FLOW TO STEAM SEAL RES. 1800 16.70 1310.25VENT FLOW TO GLAND SEAL COND. 287 1310.25 SEFORE PRESSURE DROP 995045 79.82 1310.25 MAIN FLOW DIVIDED BY 2 AT THIS POINT ENTERING DIAPHRAGM STAGE NO. 18 497523 78.23 1310.25 ENTERING DIAPHRAGM STAGE NO. 19 ENTERING DIAPHRAGM STAGE NO. 21 465096 46.04 1260.23 423646 12.68 1160.41 ENTERING COND. LAST STAGE NO. 22 423646 5.607 1109.39 BEFORE ENTRY OF LEAKAGE 423646 1.006 1044.37 2-R PACKING SEAL FLOW FROM STEAM SEAL REG. 1401 16.70 1354.80 VENT FLOW TO GLAND SEAL COND. 499 1355.80 PEFORE PRESSURE DROP 424096 1.004 1044.70 EXHAUST FLOW 424096 0.7367 Nfld. 2 Labrador Hydro 91.7 1044.70 ENGINEERING & CONST. 502HA550 AUG 31 1988 page 1 of 3 ST. JOHN'S, NFLD.

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study – Unit Capacity Limitations

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 73 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

:

Holyrood Units #1,2,3

1

*	^a HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD)	100080 1225560	542.9 515.8	681.3 470.2	1344.42 1344.42 453.82
	DRAINS LEAVING D.C. (10 DEG TD)	100080	515.8	397.9 407.9	375,38 383,89
	HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	.49999 1225560 1225560 100080 150079	259.5	832.9 397.9 350.8	1440.09 1440.09 375.38 326.09 383.89
		100079	241.0	360.8	JJJ. 24
	HEATER NU. 4 (CLUSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK	30528 6794	155.9	707.3	1380.28 1380.28 1344.26
	FEEDWATER LEAVING (5° DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING	1225560 1225560 150079	145.0	350.8 314.3	1373.72 326.09 288.54 333.24
		187401	145.0	324.3	294.91
	FLUW FRUM F.W. IU BUILER	Q	2362,	314.3	288.54
۲	FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	1225560 1225560	2362.	314.3 306.9	289.54 276.84
	HEATER NO. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	36894 1225560 1001265 187401	79.82 74.24 74.24	558.2 306.9 266.4	1310.25 1310.25 276.84 235.38 294.91
	HEATER NO. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	54954 1001265 1001265 64854	46.04 42.82 42.82	450.3 266.4 196.8 206.8	1260.23 1260.23 235.38 165.09 175.02
				502HA5	50
				page 2	of 3

	GT NEIT 665, Attachment 1
Increase Generating Capacity at HTGS - Improve Boil	er Load Capacity – Units 1, 2 and 3, Page 74 of 90
Babcock & Wilcox PGG Canada	Newfoundland and Labrador Hydro

Holyrood Units #1,2,3

GT-NI H-005 Attachment 1

5 e e 1	*				
4 A	,				
	HEATER NO. 1 (PUMPED DRAINS)				
41	TURBINE SHELL CONDITIONS		12.68	231.2	1160.41
	STEAM EXTRACTED FROM TURBINE	82900			1160.41
	STEAM FROM STEAM SEAL DUMP	4350			1356.80
	STEAM TO HEATER (7 PC DELTA P)	87250	11.79		1170 20
	ELAN ERAM MAKEUR CAURES	0,200	/ /		453 07
	FLOW FROM EN BELOW VEATED 1	0			453.62
	PLUW FRUM FW. BELUW HEMIER I	(1051			433,82
	DRAINS ENTERING	64834			1/5.02
	DRAINS PUMPED TO FEEDWATER	152104	11./9	201.1	107.18
	FEEDWATER AFTER DRAIN ENTRY	1001265		196.8	165.09
	FEEDWATER LEAVING (5 DEG TTD)	849161		196.1	164.36
	FEEDWATER ENTERING	849161		92.8	61.06
	STEAM SEAL REGULATOR				
	FLOW FROM VALVE STEM PACKING	999			1477,70
	FLOW FROM 3-R PACKING SEAL	2952			1344.26
	FLOW FROM 2-8 PACKING SEAL	1800			1310.25
	FLOW TO 2-8 PACKING SEAL	1401			1354 80
	MAVELIO FORM THODINE IN ET	1401			1477 70
	DUMP TO UCATED NO. 1. EXTO	4750	10 (0		175/ 00
	DUMP TO HEATER NO. 17 EXTR	4000	14.00		1008.60
	GLAND SEAL CONDENSER				
	STEAM FROM 3-R PACKING VENT	182			1344.26
	STEAM FROM 2-R PACKING VENT	287			1310.25
	STEAM FROM 2-R PACKING VENT	499			1356.80
	FEEDWATER LEAVING	849161		92.8	61.06
	FEEDWATER ENTERING	849161		91.5	59.74
	DRAINS TO CONDENSER	968			179.48
	FLOW FROM F.W. TO HEATER NO. 1	Q -	11.79	91.5	453,92
	CERUATER DUMP (A RTH VEAT RIRE)				
	CEEDWATER FURE (U. DIU HEAT AIDE)	3/01/1	100.0	01 5	50 74
	FEEDWATER ENTEDING	047101	100.0	91.0	37.74
	FEEDWATER ENTERING	347161		91./	37.74
	CONDENSER				
	STEAM TO CONDENSER	424096	0.7367		1044.70
	DRAINS ENTERING	968			
	FEEDWATER LEAVING	849161	0.7367	91.7	59.74

RATING FLOW (GUARANTEED) IS 1157200 LB/HR AT INITIAL STEAM CONDITIONS OF 1875 PSIG, 1000 F. TO ASSURE THAT THE TURBINE WILL PASS THIS FLOW, CONSIDERING VARIATIONS IN FLOW COEFFICIENTS FROM EXPECTED VALUES, MANUFACTURING TOLERANCES ON DRAWING AREAS, ETC... WHICH MAY AFFECT THE FLOW, THE TURBINE IS BEING DESIGNED FOR AN EXPECTED FLOW OF 1225560 LB/HR.

CALCULATED DATA NOT GUARANTEED.

502HA550 page 3 of 3 GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 75 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

	ter and the second s			MCR	
/	* NEWFOUNDLAND TB. ND. 940310+9403 TIR# 10236-893A, UPRATE 1875G-1000/1000F-1.5 IN. HGA	511		6/5	5/88
	GROSS HEAT RATE = 7982 STU/KWHR GENERATOR OUTPUT = 174160 KW RATED GENERATOR LOSS = 1864 KW AT .90 P.F., STEAM CONDITIONS 1875 PSIG, 1000/100	194445 KV 45 PSIC 0 F, 1.5	/A, .90 F 3 H2, ME IN HGA	'.F., COM CH LOSS 3	IV COOLED = 609 KW 600 RPM
		F LB/HR	P PSIA	TF	H BTU/LB
	HEAT SOURCE STEAM FROM BOILER BLOWDOWN	1167200 0	1890.	1000.0	1477.70
	WATER TO ATTEMPERATOR FEEDWATER TO BOILER STEAM FROM REHEATER STEAM TO REHEATER	0 1167200 1044878 1044878	466.3 518.1	465.4 672.0	285.40 448.44 1521.31 1340.63
	TURBINE STEAM TO THROTTLE VALVE STEM LEAKAGE	1167200	1890,	1000.0	1477.70
	TO H.P. TURB. EXHAUST TO STEAM SEAL REG. ENTERING 1-R CONTROL STAGE NO. 1 ENTERING DIAPHRAGM STAGE NO. 2 3-3 PACKING	1477 953 1164770 1146779	518.1 16.70 1860. 1432.		1477.70 1477.70 1477.70 1451.49
	LEAK-OFF TO HEATER NO. 4 EXTR. SEAL FLOW TO STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND. BEFORE PRESSURE DROP	6503 2824 183 1137269	149.0 16.70 523.3		1340.46 1340.46 1340.46 1340.46
	BEFORE FLOW ENTRY BEFORE PRESSURE DROP BEFORE ENTRY OF LEAKAGE 1-R PACKING	1137269 1044878 1044878	518.1 466.3 457.0	671.7	1340.46 1521.31 1521.31
	FLOW FROM STAGE 1 SHELL ENTERING DIAPHRAGM STAGE NO. 11 ENTERING DIAPHRAGM STAGE NO. 14 ENTERING DIAPHRAGM STAGE NO. 14 2-R PACKING	17991 1062269 1015914 987378	1432. 457.0 247.8 149.0		1451.49 1520.13 1440.67 1380.86
	SEAL FLOW TO STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND. SEFORE FRESSURE DROP MAIN FLOW DIVIDED BY 2 AT THIS POINT.	1705 287 950578	16.70 76.31		1310.80 1310.80 1310.50
	ENTERING DIAPHRAGM STAGE NO. 18 ENTERING DIAPHRAGM STAGE NO. 19 ENTERING DIAPHRAGM STAGE NO. 21 ENTERING COND. LAST STAGE NO. 22 BEFORE ENTRY OF LEAKAGE 2-5 PACKING	475289 444689 405879 405879 405879	74.79 44.05 12.16 5.369 0.9833		1310.80 1250.78 1160.98 1109.82 1045.02
	SEAL FLOW FROM STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND. SEFORE FREESURE DROP Nfld. & Labrador Hydro EXHAUST FLOW ENGINEERING & CONST.	1402 500 406330 406330	16.70 0.9833 0.7367	91.7	1355.10 1355.10 1045.36 1045.36
	AUG 31 1988			502HA28 page 1	39 (rev.1) of 3

Holyrood Units #1,2,3

1 ::-					
	HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COCLER DRAINS LEAVING D.C. (10 DEG TD)	93868 1167200 1167200 93868	518.1 492.2 492.2	672.0 465.4 393.9 403.9	1340.63 1340.63 448.44 371.15 379.54
	HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	46955 1167200 1167200 93868 140823 5 266955	230.4	833.2 393.9 347.2 357.2	1440.67 1440.67 371.15 322.43 379.54 329.49
	HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	28536 6503 35039 1167200 1167200 140823 175862	149.0 149.0 138.5 138.5	707.8 347.2 311.2 321.2	1380.86 1380.86 1340.46 1373.36 322.43 285.40 329.49 291.70
	FLOW FROM F.W. TO BOILER	0	2362.	311.2	285.40
	FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	-1167200 1167200	2362.	311.2 303.9	285.40. 273 .70
	HEATER ND. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	34809 1167200 956529 175862 •	76.31 70.97 70.97	558.8 303.9 243.7	1010.90 1310.90 273.70 232.64 291.70
	HEATER NO. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (S DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	61200 956527 956529 61200	44.05 40.97 40.97	451.0 263.7 194.8 204.8 502HA23 page 2	1260.78 1260.78 232.84 163.04 172.96 9 (rev.1) of 3

Holyrood Units #1,2,3

*** ****	- 3°				
	HEATER NO. 1 (PUMPED DRAINS) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE FLOW FROM FW. BELCW HEATER 1 DRAINS ENTERING DRAINS PUMPED TO FEEDWATER FEEDWATER AFTER DRAIN ENTRY FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING	77619 4079 81699 0 61200 142899 956529 813630 813630	12.16 11.30 11.30	232.0 199.1 194.8 194.1 92.8	1160.98 1160.98 1355.10 1170.67 448.44 448.44 172.96 167.14 163.04 162.32 61.12
	STEAM SEAL REGULATOR FLOW FROM VALVE STEM PACKING FLOW FROM 3-R PACKING SEAL FLOW FROM 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	953 2824 1705 1402 0 4079	12.16		1477.70 1340.46 1310.80 1355.10 1477.70 1355.10
	GLAND SEAL CONDENSER STEAM FROM 3-R PACKING VENT STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT FEEDWATER LEAVING FEEDWATER ENTERING DRAINS TO CONDENSER	183 287 500 813630 913630 970		92.8 91.5	1340.46 1310.80 1355.10 61.12 59.74 179.48
	FLOW FROM F.W. TO HEATER NO. 1	0	11.30	91.5	448.44
	FEEDWATER PUMP (O. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	813630 813630	100.0	91.5 91.7	59.74 59.74
	CONDENSER STEAM TO CONDENSER DRAINS ENTERING	406330 970	0.7367		1045.36
*	FEEDWATER LEAVING	813630	0.7367	91.7	59.74
				502HA page 3	289 (rev.1) of 3

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 78 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

イキー (語) 第二 (1) 				75%	DACR
NEWFOUNDLAND TB. TIR# 10234-893A, US 18756-1000/1000F-1.	NG. 940310+ PRATE .5 IN. HGA	940311 -		Ξ	9/5/88
GROSS HEAT RATE = 7987 BTU/ GENERATOR OUTPUT = 135841 9 GENERATOR LOSS = 1564 KW AT STEAM CONDITIONS 1875 PS1	/KWHR (W RATED [.90 P.F., [G, 1000/100	194445 KV 20 PSIG 0 F, 1.5	A, .90 P H2, ME IN HEA	.F., COM CH LOSS	IV COOLED = 609 KW 3600 RFM
		F LS/HR	P PSIA	ĩΕ	H BTU/LB
HEAT SOURCE STEAM FROM BOILER BLOWDOWN		875400 0	1990.	1000.0	1477.70 [×]
WATER TO ATTEMPERATOR FEEDWATER TO BOILER STEAM FROM REHEATER		0 875400 789636	757. 4	437.9	267.37 418.26 1524 41
STEAM TO REHEATER		789636	392.9	629.9	1325.08
TURBINE					
STEAM TO THROTTLE VALVE STEM LEAKAGE		875400 693,37	3 1890.	1000.0	1477.70
TO H.P. TURB. EXHAUST TO STEAM SEAL REG.		1707 723	392.9		1477.70
ENTERING 1-R CONTROL STAG	E NO. 1	872970	1873.		1477.70
ENTERING DIAPHRAGM STAGE	NO. 2	889428	1061.		1429.55
LEAK-OFF TO HEATER NO.	4 EXTR.	4992	113.8		1324.77
SEAL FLOW TO STEAM SEAL	_ RE8.	2147	16.70		1324.77
VENT FLUW TU GLAND SEAL Refore rressure drop	LUND.	357103	394.9		1324.77
BEFORE FLOW ENTRY		852103	392.9	629.J	1324.77
BEFORE PRESSURE DROP		789535	353.6		1524.51
BEFORE ENTRY OF LEAKAGE		789636	346.5		1524.61
FLOW FROM STAGE 1 BHELL		13342	1051.		1429.55
ENTERING DIAPHRAGM STAGE	NC. 11	305178	346.5		1523.01
ENTERING DIAPHRAGM STAGE	NO. 14	770653	198.7		1443.67
ENTERING DIAPHRAGE STAGE	MC. 14	781484	113.8		1383.86
SEAL FLOW TO STEAM BEAU	. REG.	1216	16.70		1015.48
VENT FLOW TO GLAND SEAD	. COND.	286			1313.55
BEFORE PRESSURE DROP		725248	38.46		1313.69
MAIN FLUW DIVIDED BY Z AT	NU 10 HIP CINE		57 00		1717 20
ENTERING DIAPHRAGM STAGE	NO. 19	340875	33.89		1240.72
ENTERING DIAPHRAGH STAGE	NG. 21	314738	9.473		1164,08
ENTERING COND. LAST STAGE	NG. 22	3:4735	4.148		1112.09
BEFORE ENTRY OF LEAKAGE 2-R PACKING		5-4755	0.8825		1049.49
SEAL FLOW FROM STEAM SEAL VENT FLOW TO GLAND SEAL	AL REG. 	1408 505	16.70		1348.83 1348.83
EXHAUST FLOW	Labrador Hydro	JIE187	0.2825 0.7327	71.7	104년,92 104년,92
ENGINEI	SHING & CONST.	}			
AUC	31 1988			Dage 5029A	190 (rav.1) C of S
ST. JC	HN'S, NFLD.	}			

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 79 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

 * ₇ 2				
HEATER NG. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	64174 875400 875400 64174	392.9 373.3 373.3	629.9 (437.9) (381.0)	1325.08 1325.08 418.26 347.14 354.87
HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	32525 875400 875400 64174 96698	188.7 175.5 175.5	834.5 (371.0) (326.9) (336.9)	1443.67 1443.67 347.14 301.52 354.87 308.14
HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	19169 4992 24161 875400 875400 96698 120860	113.8 113.8 105.8 / <i>36</i> 105.8	710.2 326.9 293.5 303.5	1383.86 1383.86 1324.77 1371.65 301.52 267.37 308.14 273.35
FLOW FROM F.W. TO BOILER	0	2362.	293.5	267.37
FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	875400 875400	2362.	293.5 284.3	267.37 255.67
HEATER ND. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	24734 875400 729806 120860	58.46 54.37 54.37	561.9 286.3 248.2	1313.68 1313.68 255.67 216.88 273.35
HEATER ND. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAN TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN CODLER DRAINS LEAVING D.C. (10 DEG TD)	43499 729806 729806 43499	53.89 31.52 770 73 31.52	454.7 248.2 182.9 192.9	1263.72 1263.72 216.88 151.16 161.03
			page 2	at 2 0 (ISA) 1)

Holyrood Units #1,2,3

and the second sec			112 ML	JU .
HEATER NO. 1 (PUMPED DRAINS) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE FLOW FROM FW. BELOW HEATER 1 DRAINS ENTERING DRAINS PUMPED TO FEEDWATER EREDWATER ASTER DRAIN ENTER	52280 2678 54958 0 43499 98457 78857	9.473 9.510 8.810	187.3	1164.08 1164.08 1348.53 1173.07 418.26 418.26 161.03 155.31
FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING	431350 431350	73 26	182.9 182.3 93.2	151.16 150.51 61.52
STEAM SEAL REGULATOR FLOW FROM VALVE STEM PACKING FLOW FROM 3-R PACKING SEAL FLOW FROM 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	723 2147 1216 1408 0 2678	9.473		1477.70 1324.77 1313.68 1348.53 1477.70 1348.53
GLAND SEAL CONDENSER STEAM FROM 3-R PACKING VENT STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT FEEDWATER LEAVING FEEDWATER ENTERING DRAINS TO CONDENSER	186 286 503 631350 631350 975		93.2 91.5	1324.77 1313.68 1348.53 61.52 59.74 179.48
FLOW FROM F.W. TO HEATER NO. 1	0	8.810	91.5	418.26
FEEDWATER PUMP (O. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	431350 431350	100.0	91.5 91.7	59.74 59.74
CONDENSER STEAM TO CONDENSER DRAINS ENTERING FEEDWATER LEAVING	315187 975 631350	0.7367 0.7367	91.7	1049.92 59.74
			501NA: page 3	290 (rev.1) 3 of 3

. .

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 81 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

NEWFOUNDLAND TE, NO. 940310)+940311	\sim	-	8/5/4-
TIR# 10236-893A, UPRATE 18756-1000/1000F-1.5 IN. HGA		i.		
GROSS HEAT RATE = 8109 BTU/KWHR GENERATOR OUTPUT = 93140 KW RATED GENERATOR LOSS = 1092 KW AT .90 P.F., STEAM CONDITIONS 1875 PSIG, 1000/10	.50 PSI .50 PSI .00 F, 1.5	VA, .90 P Ig H2, Me In Hga	CH LOSS	V COCLED = 607 KW 3600 RPM
	F LB/HR	P PSIA	TF	Н ЭТИ/ЦВ
HEAT SOURCE STEAM FROM BOILER BLOWDOWN	583600 0	1890.	1000.0	1477.70
WATER TO ATTEMPERATOR FEEDWATER TO BOILER STEAM FROM REHEATER	0 583400 531457	270 0	401.7	243.38 379.49
STEAM TO REHEATER	531457	265.5	590.6	1312.75
TURBINE STEAM TO THROTTLE VALVE STEM LEAKAGE	583600	1890.	1000.0	1477.70
TO H.P. TURB. EXHAUST TO STEAM SEAL REG. ENTERING 1-R CONTROL STAGE NO. 1	1942 488 581170	245.5 16.70		1477.70 1477.70
ENTERING DIAPHRAGM STAGE NO. 2 = 3-R PACKING	572116	699.9	· · ·	1411.47
SEAL FLOW TO STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND.	3412 1412 188	_77.52 16:70		1312.19 1312.19 1312.19
BEFORE PRESSURE DROP BEFORE FLOW ENTRY BEFORE PRESSURE DROP	567104 567104 531457	248.2 245.5 238.9	589.6	1312.19 1312.19 1527.96
BEFORE ENTRY OF LEAKAGE 1-R PACKING FLOW FROM STAGE 1 SHELL	531457 9054	234.1		1527.96
ENTERING DIAPHRAGM STAGE NO. 11 ENTERING DIAPHRAGM STAGE NO. 14 ENTERING DIAPHRAGM STAGE NO. 14	540511 520981	234.1 128.1		1526.00
2-R PACKING SEAL FLOW TO STEAM SEAL REG.	674	16.70		1316.86
BEFORE PRESSURE DROP Main Flow divided by 2 at this point	283 493763 T	39.99		1316.86
ENTERING DIAPHRAGM STAGE NO. 18 ENTERING DIAPHRAGM STAGE NO. 19 ENTERING DIAPHRAGM STAGE NO. 21	246882 233427 218791	39.19 23.30 6.624		1316.86 1267.02 1167.74
ENTERING COND. LAST STAGE NO. 22 Before entry of leakage 2-r packing	218791 218791	2,868 0.8069		1114.65 1058.92
SEAL FLOW FROM STEAM SEAL REG. Vent Flow to gland seal cond. Before resigned drop	1411 505 219245	16.70		1344.61 1344.61
EXHAUST FLON	219245	0.7367	91.7	1059.51
			502HA2	91 (rev.1) 04 3
			µ್ಲುಕ್ಕ⊭ ಕ	_, _

2E6-28-1388 13:14 EKOW CE CAN AIZ BFD'101 680 10

Newfoundland and Labrador Hydro (NLH) Holyrood Station

2014 TCZT/C/E0/T-6

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 82 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

		\smile		
- WEATER NO & (CLOSED WITH D C)				
CONDITIONE AT H & TOCD EVUADOR		-		
		265.5	590.5	1312.75
STEAM TO HEATER (5.0 PC DELTA P)	37588	252.2	\sim	1312.75
FEEDWATER LEAVING (O DEG TTD)	583600		600.7	379 40
FEEDWATER ENTERING DRAIN COOLER	583600		340 7	7.5.77
DRAINS LEAVING D.C. (10 DEG TD)	77500	252 2	750.7	313.73
	0/000	24 - 24 - 24	320.7	322.71
HEATER NO & (DIORED WITH D C)				
HEHIER NO. 3 (LEUSED WITH D.C.)				
TURBINE SHELL CUNDITIONS		122.1	836.2	1446.88
STEAM TO HEATER (7.0 PC DELTA P)	19530	119.2		1446.88
FEEDWATER LEAVING (O DEG TTD)	583400		240.7	715 77
FEEDWATER ENTERING DRAIN COOLER	583600		200	010.70
DRAINS ENTERING	77500		277.7	2/3.93
	3/300			322.71
DRAINS LEAVING D.C. (IO DEG ID)	5/118	119.2	309.9	280.03
HEATER NU. 4 (CLUSED WITH D.C.)				
TURBINE SHELL CONDITIONS		77.52	713.1	1387.12
STEAM EXTRACTED FROM TURBINE	10917	77.52		1397 17
STEAM FROM 3-R PACKING LEAK	3412			1310 10
EXTRACTION STEAM (7.0 PC DELTA P)	11300	72 10		1312.17
SEDWATER / EAUTHE (F DEG TTD)	507/00	12.10		1369.28
	283800		299.9	273.93
FEEDWATER ENTERING DRAIN COULER	583400		269.8	243.38
DRAINS ENTERING	57118			280,03
DRAINS LEAVING D.C. (10 DEG TD)	71447	72.10	279.8	248.99
A STAR FLOW FROM F.W. TO BOILER . START		2362.	269 8	243 30
			200700	240,00
FEEDWATER PUMP (12, BTU HEAT RISE)				
FEDWATER LEAVING	583400 -	776-7		
SEGNIATED ENTEDING	5000000	، ∠0ن.	207.8	243.38
	383800		262.9	231.68
HEATER NO. 3 (UPEN)				
IURBINE SHELL CUNDITIONS		39.99	565.6	1316.86
EXTRACTION STEAM (7 PC DELTA P)	15322	37.19		1316.86
FEEDWATER LEAVING	583600	37.19	262.9	231 68
FEEDWATER ENTERING	494831	• • • • • •	227 3	105 77
DRAINS ENTERING	71447		227.5	170.70
	/144/			248.99
	` .			
TURNUE AUT L ROUGED WITH D.C.)	•			
IURBINE SHELL CONDITIONS		23.30	459.1	1267.02
STEAM TO HEATER (7.0 PC DELTA P)	26909	21.67		1267.02
FEEDWATER LEAVING (5 DEG TTD)	496831		227.3	195.73
FEEDWATER ENTERING DRAIN COOLER	496831		166 9	174 95
DRAINS LEAVING D.C. (10 DEG TD)	24000	21 67	174 0	144 70
	20707	AL.0/	1/0.0	144.78
			502HA2	91 (rev.1)

page 2 of 2

266-58-1333 13:12 EKOW CE CHA HIZ BED'101 680 10 0-13003231521 6'07

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study – Unit Capacity Limitations

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 83 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

	۵				
	HEATER NO. 1 (PUMPED DRAINS)				
	TURBINE SHELL CONDITIONS		6.624	242.6	1167 74
	STEAM EXTRACTED FROM TURBINE	29272			1167.74
	STEAM FROM STEAM SEAL DUMP	1183			1344.41
	STEAM TO HEATER (7 PC DELTA P)	30454	6.160		1174.61
	FLOW FROM MAKEUP SOURCE	0			379 49
	FLOW FROM FW. BELOW HEATER 1	' Ö			379.49
	DRAINS ENTERING	26909			144 79
	DRAINS PUMPED TO FEEDWATER	57363	6.160	171.2	139.18
	FEEDWATER AFTER DRAIN ENTRY	496831		166.8	134.95
	FEEDWATER LEAVING (5 DEG TTD)	439468		166.2	134.40
	FEEDWATER ENTERING	439468		94.0	62.30
	STEAM SEAL REGULATOR				
	FLOW FROM VALVE STEM PACKING	488			1477.70
	FLOW FROM 3-R PACKING SEAL	1412			1312.19
	FLOW FROM 2-8 PACKING SEAL	694			1316.86
	FLOW TO 2-R PACKING SEAL	1411			1344.61
	MAKE-UP FROM TURBINE INLET	0			1477.70
	DUMP TO HEATER NO. 1 EXTR	1183	6.624		1344.61
	GLAND SEAL CONDENSER				
	STEAM FROM 3-R PACKING VENT	198			1312.19
	STEAM FROM 2-R PACKING VENT	285			1314 84
	STEAM FROM 2-R PACKING VENT	505	·· ··		1344 41
	FEEDWATER LEAVING		Call Marks	94.0	62.30
	FEEDWATER ENTERING	439448	2000	01 5	50 74
	T DRAINS TO CONDENSER		1407 - 199 23 - 199	/1.0	170 40
	A DOMING IO COMPENSION STREET				1/7. 4 0
	FLOW FROM F.W. TO HEATER NO. 1	Ó	6.160	91,5	379.49
	FEEDWATER PUMP (O. BTU HEAT RISE)				
	FEEDWATER LEAVING	439468	100.0	91.E	59.74
	FEEDWATER ENTERING	439468		91.7	59.74
	CONDENSER				
•	STEAM TO CONDENSER	219245	0.7367		1059.51
	DRAINS ENTERING	97 9	1. 1.		
	FEEDWATER LEAVING	439468	0.7367	91.7	59.74
				502HA2	91 (rev.1)
				paqa 3	of 3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study – Unit Capacity Limitations

1.5.1

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 84 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

here and the second				250	10 MCR
, NEWFOUN TIR# 10 18756-1	NEWFOUNDLAND TB. NO. 940310+940311 TIR# 10236-893A, UPRATE 1875G-1000/1000F-1.5 IN. HSA				8/5/8E
GROSS HEAT RATE GENERATOR OUTPU GENERATOR LOSS STEAM CONDITIO	■ 8752) BTU/KWHR T = 45259 KW RATEL = 817 KW AT .90 P.F., NS 1875 PSIG, 1000/10) 194445 K .50 PSIG D00 F, 1.5	VA, .90 F H2, Me IN HGA	2.F., CO CH LOSS 3600 (NV COOLED = 609 KW RPM
		F LB/HR	P PSIA	TF	H BTU/LB
HEAT SOURCE STEAM FROM BO BLOWDOWN WATER TO ATTE FEEDWATER TO STEAM FROM RE	ILER MPERATOR BOILER HEATER	291800 0 291800 268940	1890.	1000.0 174 <i>2</i> 346.3	1477.70 205.89 321.46 1531.37
SIEAM IU REHE	ATER	268940	135.0	572.3 300	1313.12
TURBINE STEAM TO THRO VALVE STEM LE	TTLE AKAGE	291344	1890.	1000.0	1477.70
TO H.P. TUR TO STEAM SE ENTERING 1-R ENTERING DIAP 3-R FACKING	3. EXHAUST Al REG. Control stage no. 1 fragm stage no. 2	2182 248 288914 284403	135.0 16.70 1888. 348.7		1477.70 1477.70 1477.70 1408.92
LEAK-OFF TO SEAL FLOW TO VENT FLOW TO BEFORE PRESSUF BEFORE FLOW EN BEFORE PRESSUF BEFORE ENTRY O	HEATER NO. 4 EXTR. D STEAM SEAL REG. D GLAND SEAL COND. Re DROP UTRY RE DROP DF LEAKAGE	1775 583 189 281857 281857 268940 268940	39.88 16.70 136.3 135.0 121.5 119.1	569.8	1311.84 1311.84 1311.84 1311.84 1311.84 1311.84 1531.37 1531.37
FLOW FROM ST ENTERING DIAPH ENTERING DIAPH ENTERING DIAPH 2-R FACKING	AGE 1 SHELL RAGM STAGE NO. 11 RAGM STAGE NO. 14 RAGM STAGE NO. 16	4511 273450 265148 261049	348.7 119.1 65.57 39.88		1408.92 1529.35 1450.61 1391.03
SEAL FLOW TO VENT FLOW TO BEFORE PRESSUR MAIN FLOW DIVI	STEAM SEAL REG. Gland Seal Cond. E Drop Ded by 2 at this point	49 284 253909	16.70 20.69		1320.80 1320.80 1320.80
ENTERING DIAPH ENTERING DIAPH ENTERING DIAPH ENTERING COND. BEFORE ENTRY O 2-R PACKING	RAGM STAGE NO. 18 RAGM STAGE NO. 19 RAGM STAGE NO. 21 LAST STAGE NO. 22 F LEAKAGE	126954 121021 116204 116204 116204	20.27 12.14 3.546 1.520 0.7571		1320.80 1271.18 1172.79 1118.34 1087.86
SEAL FLOW FR VENT FLOW TO BEFORE PRESSUR	OM STEAM SEAL REG. Gland seal cond. E dr <u>pp</u>	1336 479 116633	16.70 0.7571		1399.45 1399.45 1089.01
EXHAUSI FLOW	Nfld. & Labrador Hydro	116633	0.7367	91.7	1089.01
*	ENGINEERING & CONST. AUG 31 1988			502HA2 page 1	92 (rev.1) of 3
	ST. JOHN'S, NFLD.	****			

Newfoundland and Labrador Hydro (NLH) Holyrood Station

GT-NLH-005, Attachment 1 Increase Generating Capacity at HTGS - Improve Boiler Load Capacity – Units 1, 2 and 3, Page 85 of 90 Babcock & Wilcox PGG Canada Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

n na antara a				
HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	15099 291800 291800 (15099)	135.0 128.2 128.2	572.3 346.3 293.8 303.8	1313,12 1313,12 321,46 267,68 273,71
HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	8302 291800 291800 15099* 23401	65.57 60.98	838.8 293.8 257.7	1450.61 1450.61 267.68 231.22 273.71 236.66
HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE	836 2 4100	39.88 39.88	717.2	1391.03 1391.03
EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING	5875 291800 291800 23401	37.09	257.7 232.5	1347.10 231.22 205.89 236.66
FLOW FROM F.W. TO BOILER	5878 S878	37.09 2362.	242.5 232.5	205.89
FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	291800 291800	2362.	232.5 225.7	205.39 194.19
HEATER NO, 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	- 5808 291800 255717 29276	20.69 19.24 19.24	570.9 225.9 194.0	1320.80 1320.80 194.19 162.27 210.99
HEATER NO. 2 (CLGSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	11866 (258717 288717 11866	11.29 11.29	465.4 194.0 140.6 150.6	1271.18 1271.18 162.27 165.79 112.57
			502HAl page 2	90 (rev.1) 04 3

Holyrood Units #1,2,3

Contraction of the second s				
HEATER NO. 1 (PUMPED DRAINS) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE FLOW FROM FW. BELOW HEATER 1 DRAINS ENTERING DRAINS PUMPED TO FEEDWATER FEEDWATER AFTER DRAIN ENTRY FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING	9635 0 9635 0 11866 21501 255717 234216 234216	3.546 3.298 3.298	251.5 145.2 140.6 140.2 96.3	1172.79 1172.79 1359.65 1172.79 321.46 321.46 118.57 113.15 108.79 108.39 64.53
STEAM SEAL REGULATOR FLOW FROM VALVE STEM PACKING FLOW FROM 3-R PACKING SEAL FLOW FROM 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	248 583 49 1336 456 0	3.546		1477.70 1311.84 1320.80 1399.65 1477.70 1399.65
GLAND SEAL CONDENSER STEAM FROM 3-R PACKING VENT STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT FEEDWATER LEAVING FEEDWATER ENTERING DRAINS TO CONDENSER FLOW FROM F.W. TO HEATER NO. 1	189 284 479 234216 234216 951	3.298	96.3 91.5 91.5	1311.84 1320.80 1399.65 64.53 59.74 179.48 321.46
FEEDWATER PUMP (O. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	234216 234216	100.0	91.5 91.7	59.74 59.74
CONDENSER STEAM TO CONDENSER DRAINS ENTERING FEEDWATER LEAVING	116633 951 234216	0.73 67 0.7367	91.7	1087.01 59.74
			502HAJ	191 (rev.1)

page 3 of 3

Holyrood Units #1,2,3

8.3 B&W Boiler Performance Data Sheet (C/7391)

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Holyrood Units #1,2,3

8.4 Unit #3 Heat Balance Diagram (NLH 1403-200-M001 Rev 2)

8.6 ARVOS Replacement Hot End Heating Surfaces Performance (Unit #3)

Performance Tabulation	LAP-HOW1019	01/17/18
Selection Designation:	HOW-1019	HOW-1019
	Present	Proposed
Model Number:	2-22.5-VI	2-22.5-VI
Element Configuration:	HE: 32.0" 22LA DU ND	HE: 30.0" 22LA DN7 [™] ND
	CE: 12.0" 22/20E NF6 FW	CE: 12.0" 22/20E NF6 FW
		,,,,
Elevation:	100	100
Flows, LBS./HR.	Design	Design
AIR ENTERING	1,111,000	1,110,500
AIR LEAVING	1,000,000	1,000,000
GAS ENTERING	1,071,000	1,071,000
GAS LEAVING	1,182,000	1,181,500
Temperatures, DEG. F.		
AIR ENTERING	128.3	128.3
AIR LEAVING	560.	560.
GAS ENTERING	734.	734.
GAS LEAVING UNCORR.	362.	362.
GAS LEAVING CORR.	342.	342.
AVE COLD END TEMP	245.	245.
Pressures, IN.WC		
PRESSURE DROP AIR	2.1	1.85
PRESSURE DROP GAS	2.85	2.5
HOT END DIFFERENTIAL	11.0	11.0
COLD END DIFFERENTIAL	15.95	15.35
RATIO OF SPECIFIC HEATS	0.923	0.923

Note: The information included herein is the proprietary and confidential property of ARVOS Ljungstrom LLC, and is not to be copied or disseminated without written permission from ARVOS Ljungstrom LLC. Performance tabulation is for reference only.