Page 1 of 2

1	Q.	Reference: Hydro's 2016 Standby Fuel Deferral Application, February 5, 2016,
2		response to Request for Information NP-NLH-003. Hydro states:
3		
4		"Hydro uses guidance from the results of the Vista Decision Support System which
5		provides recommended hydro and thermal generation schedules using simulations
6		of all historic inflow scenarios. In addition, other factors are taken into
7		consideration such as: weather and load forecasts, snow pack, distribution of the
8		storage within the reservoir system, and the available thermal capacity."
9		
10		Did Hydro continue to use thermal and standby generation to support reservoir
11		levels once Vista indicated it was no longer necessary to do so? If so, please
12		indicate how much energy from thermal and standby generation sources was used
13		for this purpose in each instance after Vista recommended it was no longer
14		required.
15		
16		
17	Α.	Vista is a decision support software and the recommendations from Vista are
18		tempered with the professional judgement and experience of the System
19		Operations engineers and managers that attend Hydro's weekly water management
20		meetings. Other factors taken into consideration include recent and forecast
21		weather, reservoir levels and trends, and system conditions such as unit outages
22		and watershed conditions such as snow pack levels.
23		
24		In early January 2016, Vista was indicating a requirement for high thermal
25		generation for all of the 56 historic inflow sequences that it simulated. As the spring
26		progressed, the need for high thermal generation continued to forecast in the driest
27		of the sequences but not in all sequences. During this period, regular snow surveys

Page 2 of 2

1	indicated that the snow pack was considerably lower than normal. Therefore, of the
2	56 inflow sequences that Vista normally simulates to come up with its
3	recommendations, some of them were known to be less likely than others and so
4	could be discounted.
5	
6	On April 14, 2016, Hydro determined that, from a water management perspective,
7	only minimum generation was required at Holyrood in the near term. At that time
8	Vista was still recommending marginally above minimum thermal generation for
9	short periods of the driest historic scenario but continued higher inflows meant that
10	thermal generation did not have to be increased again.