Page 1 of 1

1	Q.	(Summary Report – Additional Cost of Service Information, page 9, lines 19 to 21)
2		Please provide the basis for reducing the fuel conversion factor at Holyrood in the
3		2019 test year from 616 kWh per barrel in the "Revised Deferral Account Scenario"
4		to 583 kWh per barrel in the "Expected Supply Scenario". Please describe the
5		expected operating pattern for Holyrood in 2019. For example, is it expected to
6		operate at low output levels for much of the winter period, or high output levels
7		infrequently over the winter period?
8		
9		
10	Α.	Please refer to Hydro's response to NP-NLH-292 for the derivation of the fuel
11		conversion factor at Holyrood of 583 kWh per barrel in the 2019 Test Year of the
12		"Expected Supply Scenario".
13		
14		In the 2019 Test Year production plan for the Expected Supply Scenario, Holyrood
15		units have been dispatched for reliability requirements based on forecast system
16		load. These reliability requirements result in the dispatch of three Holyrood units
17		during peak months in the winter operating season. The availability of recapture
18		and pre-commissioning energy enable the Holyrood units to be kept at minimum
19		loading of 70 MW when dispatched (i.e. low output levels for much of the winter
20		period). This average unit loading results in a fuel conversion factor of 583 kWh per
21		barrel.