Page 1 of 3

1	Q.	(Sı	ummary Report – Additional Cost of Service Information, page 7, Table 5) Please
2		pr	ovide the calculation used to derive the estimates included in Table 5 for
3		Re	capture Energy.
4			
5			
6	Α.	Th	e estimates are not a result of a simple calculation that can be provided; rather,
7		th	e estimates are the output of a modelling exercise Hydro undertakes for its
8		pr	oduction planning process. To provide clarity on how the estimates were
9		de	termined, the following high level description of the production planning process
10		Wa	as prepared to describe the generation calculations in the Expected Supply
11		Sc	enario:
12		1.	Customer requirements were developed based on Hydro's operating load
13			forecast.
14		2.	Customer requirements were modeled in Vista to determine system losses and
15			average hydrology.
16		3.	Results from Vista model were incorporated into Hydro's production planning
17			tool.
18		4.	Holyrood units were dispatched for system reliability requirements to
19			determine the number of Holyrood units required to be online.
20		5.	Holyrood units required online for reliability were dispatched at the minimum
21			unit loading of 70 MW.
22		6.	Standby requirements were calculated based on the number of Holyrood units
23			online and the availability of 110 MW firm capacity from Recapture Energy.
24		7.	Once standby generation was determined, Recapture Energy was dispatched to
25			the extent that it was available in excess of Labrador energy requirements. The
26			amount of Recapture Energy used formed the basis of the quantities used in NP-

Page 2 of 3

1		NLH-115 and PUB-NLH-110 (388 GWh in the 2018 Test Year, 919 GWh in the
2		2019 Test Year).
3	8.	Maritime Link (ML) imports were then forecast, to provide economy energy up
4		to 5% of the total monthly energy requirement forecast for import in months
5		where additional energy was required to balance system requirements.
6	9.	Holyrood average unit loading was then increased to meet system energy
7		requirements in months where system requirements had not been fully met
8		following the dispatch of hydraulic production, Island Power purchases, and ML
9		and the Labrador-Island Link (LIL) purchases, and standby production. This
10		resulted in net Holyrood generation.
11	10	. Net average unit loading from step 9 and the calculated fuel consumption rate ¹
12		result in the net fuel conversion factor. As increasing quantities of Recapture
13		Energy and ML purchases were used to meet system requirements, average unit
14		loading in the Expected Supply Scenario decreased in comparison to Hydro's
15		filed conversion factor. This resulted in fuel conversion factor of 602 kWh per
16		barrel in the 2018 Test Year and 583 kWh per barrel in the 2019 Test Year,
17		compared to the filed conversion factor of 616 kWh per barrel in both the 2018
18		and 2019 Test Year.
19	11	. Gross Holyrood generation ² and standby generation requirements are used to
20		produce fuel forecasts.
21	The	results of step 6 determined the estimates of Recapture Energy provided in Table
22	5 of	Hydro's Additional Cost of Service Information.

¹ The fuel consumption rate results from regression analysis of gross average unit loading and heat content. ² Calculated using station service factor.

Page 3 of 3

- 1 The results of step 7 determined estimates of Maritime Link purchases provided in
- 2 Table 5 of Hydro's Additional Cost of Service Information.