| 1 CHAIRMAN: |  |
| :---: | :---: |
|  | Q. Good morning everybody. And I'll call the |
| 3 | continuation of this hearing to order. I |
| 4 | don't think there are any preliminary or |
| 5 | procedural matters to be considered, is there, |
| 6 | madame? |
| 7 | MS. GLYNN: |
| 8 | Q. No, Mr. Chair, only that the undertakings that |
| 9 | were provided by Mr. Doherty, we understand |
| 10 | that they will be filed by close of business |
| 11 | today. |
| 12 | CHAIRMAN: |
| 13 | Q. Okay, well in that case I believe I do turn it |
| 14 | over to you. |
| 15 | MS. GLYNN: |
| 16 | Q. Absolutely. |
| 17 | CHAIRMAN: |
| 18 | Q. You're on. |
| 19 | MS. GLYNN: |
| 20 | Q. And we'd like to present Ms. Paula Elliott |
| 21 | from Oliver Wyman. Ms. Elliott, I understand |
| 22 | that you would like to be affirmed? |
| 23 | MS. ELLIOTT: |
| 24 | A. Yes. |
|  | MS. GLYNN: |

> Q. And I know how to do that this time.
> MS. ELLIOTT:
> A. Good.
> MS. PAULA ELLIOTT (AFFIRMED) EXAMINATION-IN-CHIEF BY MS.

JACQUELINE GLYNN
MS. GLYNN:
Q. Thank you. Thank you for coming back and joining us again today. The parties have agreed, Ms. Elliott, on your experience and your expertise as an actuary, so we won't go through your background here this morning. I would ask that you state your current position though, please.
MS. ELLIOTT:
A. I'm with--I'm a principal with the consulting
firm Oliver Wyman.
MS. GLYNN:
Q. Thank you. Ms. Elliott, you prepared a report
dated May 16th, 2014 dealing with facilities
right filing for taxis and limousines, is that correct?
MS. ELLIOTT:
A. Yes.
ms. GLYNN:
Q. And you adopt that report as your testimony?

Page 2

MS. ELLIOTT:
A. Yes, with one change. It was brought to our attention through the work done by the consumer advocate that there was an error in the transfer to data by FA from its prior filing to this current filing, and as a result of that finding by the consumer advocate it changes our overall rate level estimate of the rate level change need from about 21 percent down by about an additional one point decline. MS. GLYNN:
Q. Okay, thank you. And Ms. Elliott, we may have covered some of all this through our examination of Mr. Doherty, but I do want to walk through your findings in your report. So I'd ask if you could describe the general approach that you take when reviewing facilities rate application.

## MS. ELLIOTT:

A. Well, with all filings that we review for the Board we compare the description of the assumptions and methodology that are presented in the filing and we compare that to the prior filing, looking for consistency, and we also compare that to the Board's guidelines, so

that we can see the assumptions and methods that are used and if there are any changes in that. So that's the first step that we do. Then we'll review the calculations, all the steps that go through the preparation of determining what the rate indication change is. Then, after we've completed that, we'll ask--we'll typically ask questions of the filer, so that we understand that we're sure that we understand their assumptions and methods. We might ask for a testing of alternative assumptions. We might ask for additional data, and sometimes there are follow-up questions. And finally, after that process is completed, we'll prepare our report of findings.
MS. GLYNN:
Q. Is there anything different in this review compared to other reviews?
MS. ELLIOTT:
A. Well, yes. In this particular review for the taxi filing we had just completed last year a review of a taxi filing, and in that review last year we found that a rate increase of 50 percent was supported based on the information

|  | $\text { Page } 5$ | Page 7 |  |
| :---: | :---: | :---: | :---: |
|  | provided. FA had proposed a 50 percent rate |  | trend rates. |
| 2 | increase and the Board approved the 50 percent |  | MS. ELLIOTT: |
| 3 | rate increase. So in this particular filing |  | A. Okay. |
| 4 | what we wanted to understand, what would cause |  | MS. GLYNN: |
| 5 | such a change after this prior filing, what |  | Q. Can you explain generally what loss trends are |
| 6 | would cause such a change to come back in with |  | and how they are used in this filing? |
| 7 | another proposal just north of 50 percent? So |  | MS. ELLIOTT: |
| 8 | that's unique in this filing. And then the |  | A. Okay. Loss trend rates are simply trying to |
| 9 | second thing with this filing compared to many |  | take historical data, experience data that we |
| 10 | other filings is that we're dealing with taxi |  | have, the taxi data in this particular filing, |
| 11 | data which is very limited and very small, |  | trying to project these historical costs |
| 12 | very volatile. So we want--there's a lot of |  | that we have to what the cost level would be |
| 13 | uncertainty in this filing compared to other |  | for the proposed rate program that's going to |
| 14 | filings. So there are two things that are |  | be effect--in effect in 2015. So that's the |
| 15 | pretty unique about this filing compared to |  | purpose of loss trend rate, is to project them |
| 16 | other reviews that we do. |  | forward. And in doing so an actuary will |
|  | MS. GLY | 17 | examine historical data to try to identify the |
|  | Q. Ms. Elliott, can you summarize the findings on |  | patterns of change in that historical data. |
|  | the proposed rate level changes? |  | So we want to look at how many claims |
|  | MS. ELLIOTT: |  | occurred, and that's referred to as the |
|  | A. Okay. Probably easiest if I just go to my |  | frequency rate. Is there a change in the |
| 22 | report. | 22 | frequency rate over time? We're trying to |
|  | NN | 23 | identify that pattern. Then we're looking at |
|  | Q. Sure. | 24 | the average claim size which is referred to as |
|  | MS. ELLIOTT: | 25 | a severity, and is that changing over time and |
|  | Page 6 |  | Page 8 |
| 1 | A. Okay, I think it's page 20. I hope it's |  | how is that changing? And the combination of |
| 2 | there. So this table we've presented for what |  | the frequency change and the severity change |
| 3 | we're referring to as the three key coverages |  | is the loss cost change, and the loss cost is |
| 4 | or the three independently rated coverages, |  | the average cost per car insured, the average |
| 5 | third party liability, accident benefits, and |  | claim cost per car insured. So we're trying |
| 6 | uninsured auto, and for those three coverages |  | to identify those patters. And in the process |
| 7 | based on assumptions presented by FA they had |  | of identifying those patterns we use something |
| 8 | a rate indication of just shy of 82 percent. |  | referred to as a regression analysis to |
| 9 | They're proposing just over 50 percent, 56.7. |  | calculate that rate of change. And in doing |
| 10 | And based on assumptions that--and the Board |  | so we want to consider what time period should |
| 11 | guidelines that we thought were reasonable, we |  | we use? How many years of data? Are any data |
| 12 | were estimating a rate increase of 21.5 |  | points--you know, what should we exclude when |
| 13 | percent with TPL just under 20 percent and |  | we do this regression analysis? We also want |
| 14 | accident benefits and uninsured auto over a | 14 | to consider are there any external forces that |
| 15 | hundred percent. And as I noted earlier, due | 15 | are occurring that could affect these loss |
| 16 | to a finding by the consumer advocate of a | 16 | trend rates? And last, but not least, we also |
| 17 | transfer error made by FA, that 21.5 percent |  | want to consider the uncertainty of that data. |
| 18 | is a little bit lower, about a point lower. |  | MS. GLYNN: |
|  | MS. GLYN |  | Q. Did Facility use its taxi data to determine |
| 20 | Q. So Ms. Elliott, today I want to touch on the |  | those loss trend rates? |
| 21 | same three issues which we discussed with Mr. |  | MS. ELLIOTT: |
| 22 | Doherty, and those are the differences between |  | A. Did--yes. Sorry. To determine the rate |
| 23 | your report and Facility's, and also |  | indications and to determine the loss trend |
| 24 | Facility's report from last year and this |  | rates that are used Facility used commercial |
|  | year. So we're going to start with the loss |  | data, and this is commercial data for vans and |

trucks. Is it not taxi experience. There's no taxi experience included in the commercial data. It's completely separate. So Facility used commercial data to determine loss trend rates and then applied that to taxi experience.
MS. GLYNN:
Q. And did Oliver Wyman use the same data? MS. ELLIOTT:
A. Yes, we used the same data, yes.

MS. GLYNN:
Q. Okay. So Ms. Elliott, is there a better alternative than the commercial data?
MS. ELLIOTT:
A. No, we are not saying that there's a better alternative than using the commercial data as FA had chosen to do, but that adds to the uncertainty. We're talking loss trend rates based on commercial experience which does not include taxis and then using those loss trend rates to apply to taxi experience.
MS. GLYNN:
Q. Ms. Elliott, is there judgment applied in selecting loss trend rates?
MS. ELLIOTT:
Page 10
A. Yes, there's considerable judgment, and one of the things that we do is we, in a review such as this review or any other rate filing review, is we look at the judgments that are made in selecting the loss trend rates by the filer in their prior filing, and then we look at the judgments that are made in this filing. So we want to see are there any differences, and that's an important issue. And then in this particular filing the judgments that are made by FA there are many differences from their prior filing. And there are differences to the judgments that we have made in selecting the commercial loss trend rates.
MS. GLYNN:
Q. And do you agree with the judgments made by Facility in selecting its loss trend rates?
MS. ELLIOTT:
A. No, we don't agree with all of the judgments made by FA and that's why we have different loss trend rates.
MS. GLYNN:
Q. Can you explain the process of how the loss trend rates become the Board's guidelines?
MS. ELLIOTT:
A. Yes. Each--every six months there's--it's called the General Insurance Statistical Agency. We refer to that as GISA. Every six months new data is released, provided by GISA. We analyze that data. We review the experience. We prepare our report that presents our loss trend rates that we've selected, and that report--we do this separately for private passenger and commercial auto. That report is then provided to the insurers for their review and comment, and based on any comments that might be received they are taken into consideration. And then the report is approved by the Board and it's published on the Board's website for insurers to use, to choose to use if they so decide to.
SLYNN:
Q. Can you explain the parameters which resulted in the different loss trend rates being chosen by yourself and by Mr. Doherty?
MS. ELLIOTT:
A. Okay. There are I guess four key differences. One is the time period that is selected. FA has chosen to use a 20 -year experience that
they review. That is a change from their prior filing, and Oliver Wyman, we are--we take into consideration the trend rates over a ten-year and a five-year period. A second difference is the reform factors. So with looking at the reforms that occurred in 2004 and determining the impact of any of those reforms. So in this filing FA has presented a very sizable impact for the reform which is a complete change from their prior filing where they found that the reforms had no impact on the loss costs, and in this filing we have the same position that there was a not a material impact, a measurable impact of the reforms on the claims experience. So those two items. Another difference that we have are the loss adjustment expenses. In this filing in calculating its loss trend rates FA excludes the loss adjustment expenses which is fine, but in their prior filing they included the loss adjustment expenses when they were calculating their loss trend rates. In our guideline loss trend rates that we prepare we include the loss adjustment expenses, so that's a difference. And then the fourth kind
of key difference is the selection of loss development factors. So lost development factors are these factors that we apply to the losses that have been reported to date to try to estimate what the claims will ultimately be, what they will ultimately cost when all the files are closed and settled. So FA selects its set of loss development factors that it applies to the indemnity only, the losses only, and we select a set up of loss development factors that we apply to the losses and loss adjustment expenses. So they're the four differences.
MS. GLYNN:
Q. Okay. And we'll go into each of those in a little bit more detail later on. So let's start with the data that you're using. We've had a lot of discussion around the data, and it is the commercial data that Oliver Wyman used, is that correct?
MS. ELLIOTT:
A. That's correct.

MS. GLYNN:
Q. Okay.

MS. ELLIOTT:
Page 14
A. Yeah.

MS. GLYNN:
Q. And you feel that that data was stable enough to prepare the loss trend rates?
MS. ELLIOTT:
A. The data is very challenging to use and there's a lot of instability in that data. So I think it would be helpful if I presented a report, I believe it's been distributed -
MS. GLYNN:
Q. Okay.

MS. ELLIOTT:
A. - that shows a measure if you will of this volatility in the data.
MS. GLYNN:
Q. Okay, so we'll just -

MS. ELLIOTT:
A. And -

MS. GLYNN:
Q. We'll bring that up there first if that's okay.
MS. ELLIOTT:
A. Thank you.

MS. GLYNN:
Q. It's actually Exhibit PE 2. We had
distributed an exhibit on Friday which we'll come to later on.
MS. ELLIOTT:
A. Okay. All right, so this for--for convenience we merged two charts that are presented in our Loss Trend Report. So the most recent report that's being used within in this rate filing are the findings based on data as of December 2012. And that's on the right-hand side, and on the left-hand side is an excerpt from our report as of December 2011. So we put these side by side just for your visual convenience, and in our report we indicate or outline what is the change from year to year of the loss cost. So looking at each of these rows--well, let's just take as of December 2012 for example. We're seeing the change in cost from $26-2006$ to 2007 is plus 29 percent; and the next year from 2007 to 2008 the cost dropped by 11 percent; and then the next year, down 9 percent; and it went down 6 percent; then it went up 34 percent; and then it went down 17 percent. So what we're seeing with this commercial data is it's pretty volatile, the costs go up, they go down, they go up, they go
down. So that one issue with this, the difficulty with the stability of the data, it's very volatile from year to year. The second issue with stability is of December we have data that's provided as I said by GISA, but claims that were reported one year--sorry, the experience that's developed new information the claims are being handled and processed, so the estimate of those claims if you take for example, an accident year 2011, the estimate of those claims that we know as of December 2011, one year later at the end of December 2012 that estimate has changed. So point that out let me look at my--if we look at 2008 to 2009, as of December 2011 the change was minus six percent, but one year later, now at the end of 2012, the change from 2008 to 2009 is minus nine percent. Similarly when we look from 2009 to 2010 we thought the change was plus three percent, but now one year later we thing it's minus six percent. And the big one is from 2010 to 2011, and we thought it was a 58 percent increase based on the information that was provided by GISA, and now one year later we think it's a 34 percent
increase. So we have the volatility from year to year, each accident year as it changes, and then we have the volatility of what we think the estimate is as it changes over time. So when we think about this data, do we describe it as stable? No, it's very unstable. It's very challenging to work with.

## MS. GLYNN:

Q. Thank you. Ms. Elliott, can you confirm that in preparing these Loss Trend Reports every six months that you look at data for the end of December and for the end of June? So for this year's report you would have looked at December 2012 and June 2012?

## MS. ELLIOTT:

A. Yes, so one of the things that we try to do, because we find the data has a lot of volatility to it, we--and to try to account for that, we look at the estimate of the loss trend rates using the data as of the end of June 2012, and then we look at it as of December 2012 when we prepare our most recent report that we're referring to. And the most recent data point is the most unstable. It's new and it's subject to change. So excluding
Q. And is the paper report that's established every six months, is that a reflection of all the analysis that you perform?

## MS. ELLIOTT:

A. No, the paper report is a summary of what we're presenting. It is by no means a reflection of all the runs that we do. We do numerous runs and I think it might be a good point--I'd like to show from our December 2011 report a summary of some of the runs, not even all of the runs that we present. And then I'll explain, you know, a little bit more. If we could bring up the 2011 report?
MS. GLYNN:
Q. And that would be PE Exhibit 3.
that last data point, that last half of 2012, helps to just bring a little more stability, not a lot of stability, but some more stability to the estimates that we're providing.
MS. GLYNN:
Q. Okay, can you describe Oliver Wyman's trend model?
MS. ELLIOTT:
A. Yes, our trend model, I think it's sophisticated and flexible. We have the ability to include any time period that we want, the number of years. We can exclude any data points that we choose to excludes. You know, maybe they were too high or too low a data point. We can include any consideration on the reforms, consumer price index, unemployment rates. We've even included models with weather, what the precipitation is. So it's a very flexible model that we use, yeah.
MS. GLYNN:
Q. Do you run your models for frequency and severity as well as loss cost?
MS. ELLIOTT:

## MS. ELLIOTT:

A. Okay. So this happens to be collision and we do the same for every report. So this is our Loss Trend Report at the end of 2012--sorry, 2011. And it's one of the exhibits at the back. And in this we have some trend rates that we've run, and we exclude--we have ten years, six years, five, you know, different ones. We look at loss cost, severity, frequency in R squares and various exclusions. So we run numerous models, versions of our trend runs, and even more than this. So to assume that we just run four models and that's it is a misunderstanding of what we do. And in the process of our work -
STAMP, Q.C.:
Q. Excuse me, Mr. Chairman, can we have the page number, please, that we're following here?
MS. GLYNN:
Q. Oh, I'm sorry. It's page 14 .

MS. ELLIOTT:
A. So the issue here is not -

MS. GLYNN:
Q. Just one second, Ms. Elliott. Do you have it?

MS. NEWBURY:

|  | Page 21 |
| :---: | :---: |
|  | Q. I'm just trying to keep track of the documents |
| 2 | here, okay? |
| 3 | STAMP, Q.C.: |
| 4 | Q. That's it. Yes, okay. Thank you. |
| 5 | MS. GLYNN: |
| 6 | Q. You have it? Okay. Sorry, go ahead. |
| 7 | MS. ELLIOTT: |
| 8 | A. So what I'm trying to express is that we |
| 9 | certainly prepare more than four trend runs |
| 10 | that you see in the written summary report, |
| 11 | many more, and even more than what's presented |
| 12 | on a summary sheet that was included as an |
| 13 | appendices in our 2011 report. And we |
| 14 | received some feedback that--which expressed |
| 15 | we'd really just rather see your data at the |
| 16 | end of the report, what they do--that you used |
| 17 | to run your models. And then when we get your |
| 18 | report, we'll know what data you used and then |
| 19 | we'll decide whether we agree or not. If we |
| 20 | don't agree, you know, we'll let you know. So |
| 21 | in 2012 we started to change our reports to |
| 22 | just include the data, a long sheet of data at |
| 23 | the end of our report because we had a comment |
| 24 | that they would find that more useful to them |
| 25 | to know exactly what we were putting in, | here, okay?

## STAMP, Q.C.:

Q. That's it. Yes, okay. Thank you.

MS. GLYNN:
Q. You have it? Okay. Sorry, go ahead.
A. So what I'm trying to express is that we certainly prepare more than four trend runs that you see in the written summary report, many more, and even more than what's presented on a summary sheet that was included as an appendices in our 2011 report. And we received some feedback that--which expressed we'd really just rather see your data at the end of the report, what they do--that you used to run your models. And then when we get your report, we'll know what data you used and then we'll decide whether we agree or not. If we don't agree, you know, we'll let you know. So in 2012 we started to change our reports to just include the data, a long sheet of data at the end of our report because we had a comment to know exactly what we were putting in,
because any other actuary can take the data and run their own trend model and then decide if they agree or not with our findings. And they found that more useful, so we made that change in our 2012 report that we didn't include this because we had the comment that they weren't finding that that useful. So that was a change.
MS. GLYNN:
Q. Can you explain the judgments that you make for your approach to your model?
MS. ELLIOTT:
A. Yes, now as I mentioned there is a lot of instability to the data. So one of the things that we're trying to do is strike a balance between responsiveness and stability. So in our model we take into consideration of what time periods we're going to use, what data that we're going to exclude, and when we take all this into account what we done and what we try to do to present what we believe is a responsive and stable approach is we take an averaging approach. So we're looking at tenyear runs and five-year runs and taking an averages of that, and we're drawing in our
selection from a prior report so that we feel that we're getting a stable estimate for each six-month report that we prepare.
MS. GLYNN:
Q. And that approach was the same in the 2011 and the 2012 report?
MS. ELLIOTT:
A. Yes.

MS. GLYNN:
Q. Okay. How do your model results compare to those of -
MS. ELLIOTT:
A. Okay, I think we've prepared an exhibit that I think will be helpful.
MS. GLYNN:
Q. And that would be Exhibit 4, the Summary of the R Squared Information?
MS. ELLIOTT:
A. Yes, yes. Okay, so first of all I promise I will not go through each number here. That would be painful. And I think it's--if you get one thing from this is that--and we're trying to compare trend models. As easy tool to use, it's not always right, but a common tool to use is the adjusted R square. The
higher the R square is, the--typically the better the fit of the model, but it's not always--it doesn't always give you the right answer, but that's kind of a rough rule of thumb. So you have the R square. The adjusted R square makes models more comparable and that's there for you. And we've presented the findings. We've done a ten-year run as we've said, ending June; a ten-year run ending December; and then the same thing with the five-year models. We look at loss costs, severity and frequency, and we've presented this here for you. And on the far columns that I've kind of highlighted if you will for you are the calculated loss trend rate. We have minus 3.6 percent on one of the ten-year models, minus 1.7 on another ten-year model; a five-year model we get 1.9 and minus 0.4 . So we take an average of those in our selection. We draw in what we selected in the prior review and that's how we're forming our selection that we present in our Loss Trend Report. So when we look at frequency for example, we're looking at the R square, the adjusted R square. They're in the fifties,


| $\text { Page } 29$ | Page 31 |
| :---: | :---: |
| 1 Q. Okay. | 1 "Gee, I excluded a couple of different data |
| 2 MS. GLYNN: | points, I take ten years. I get another |
| Q. And then we've summarized it into a | different answer." So this data is very, very |
| 4 STAMP, Q.C.: | volatile, and the findings are uncertain. So |
| 5 Q. This is the background? | it's hard to take one number and say, "That's |
| MS. GLYNN: | the right number. I've got it." You know, |
| 7 Q. Yes, yes | but you don't because it changes dramatically |
| 8 STAMP, Q.C. | with different exclusions and different time |
| Q. PE 1? | perio |
| 10 MS. GLYNN: | 10 MS . GLYNN: |
| 11 Q. And we've summaries into this chart. | 11 Q. So if Oliver Wyman had used the actual values |
| 12 MS. NEWBURY | 12 to exclude the high and low points as opposed |
| 13 Q. And that's PE 1 as well? | 13 to the percentage change to exclude the high |
| 14 MS. GLYNN: | 14 and low points, the impact would have been an |
| 15 Q. That's PE | 15 even lower trend rate |
| 16 MS. NEWBURY: | 16 MS. ELLIOTT: |
| 17 Q. PE 5. | 17 A. That's correct, yes. |
| 18 MS. GLYNN: | 18 MS. GLYNN: |
| 19 Q. Thank you. Go ahead, Ms. Elliott. | 19 Q. Okay. And that would have resulted in a lower |
| 20 MS. ELLIOTT: | 20 rate indication? |
| 21 A. Okay. So here and it's another good example | 21 MS. ELLIOT |
| 22 of excluding a couple of different data | 22 A. Right, so if you have a larger negative trend |
| 23 points,you get another different answer. So | 23 rate, then you would have your findings. Your |
| 24 we have one column which was--we just looked | 24 rate level indication would be lower than what |
| 25 at these numbers a moment ago, like the ten- | 25 we present in our report, yes. |
| Page 30 | Page 32 |
| year trend ending June 2012, the minus 3.6 | 1 MS. GLYNN: |
| 2 percent. So when we exclude data points based | 2 Q. Okay. And have you always used this approach |
| 3 on the percentage change from the prior | 3 to exclude the data points with the highest |
| 4 period, we had certain estimates, and so we | and lowest percentage change? |
| redid the work to look at to prepare this | 5 MS. ELLIOTT: |
| report. What is the loss trend estimate when | 6 A. No, no. In trying to, you know, find a way to |
| we exclude the highest dollar value, and the | 7 address the large percentage changes that we |
| lowest dollar value? And we have these | 8 were seeing from period to period in 2012 for |
| findings. So for example, for the ten year | 9 the June report, 2012 in the December report, |
| 10 ending June 2012, we have minus 3.6 percent on | 10 2012, we tried that approach. And one of the |
| 11 excluding data points that were the highest | 11 difficulties with it was understanding which |
| 12 percentage change. And then when we exclude | 12 data points we were excluding. So before that |
| 13 the data points that are on a dollar value, | 13 we hadn't used that approach, and since that |
| 14 the actual point is the highest over the | 14 time we haven't used that approach, but no. |
| 15 period that we're looking, we get minus 2.9 | 15 So it was a short time that we'd use that. |
| 16 percent. And similarly we see for the ten | 16 MS. GLYNN: |
| 17 year ending December, minus 1.7 becomes minus | 17 Q. Okay. So we're gone back to the actual |
| 18 2.4, a little more negative. We see a big | 18 values? |
| 19 change for the five year ending June, plus 1.9 | 19 MS. ELLIOTT: |
| 20 down to minus 7.6; and the five year ending | 20 A. Yes |
| 21 December, minus 0.4 to minus 0.8 . And so | 21 MS. GLYNN: |
| 22 actually if we were to do it that way to | 22 Q. Okay. Can you explain more about the |
| 23 exclude the highest dollar value, you actually | 23 difference in the reformed factor treatment, |
| 24 get a bigger negative trend. And you know, | 24 the difference between your approach and that |
| 25 again if you can just look at this and say, | 25 of Mr. Doherty? |

MS. ELLIOTT:
A. Okay. In the reform in the FA model they have as part of their 20-year review of the experience, and so it's integral to their model that they have looked at the reforms. So in the second half of 2004 they have estimated that the reform had a very sizable impact on the claims cost, and we're not finding that, in our view, intuitively reasonable. So FA--I've got my numbers here. FA has said that for bodily injury the reform cost reduced--that the reforms in 2004 caused the loss cost to reduce by 37 percent, and they've said for property damage those reforms or something in the second half of 2004 caused the lost cost to reduce by 17 percent, and for accident benefits they've said that the 2004 reforms or something in the second half of 2004 caused AB to reduce by 73 percent, and it was a reduction down, 73 percent, and a sustained reduction, not just a one-time dip, that all the cost came down by 73 percent and stayed at that level barring, you know, loss trend, changing it over time and we don't find that t be intuitively reasonable.

Page 34
MS. GLYNN:
Q. And can you explain why you find these to be unreasonable?
MS. ELLIOTT:
A. Well, we have--we review the rate filings on behalf of the Board and we have not seen that in other rate filings. In FA's own rate filing last year for taxis, they assume that the reforms had no impact on the cost. So this is a complete turnabout by FA, that it now sees these reform savings from the 2004 reforms, or something in 2004, and you know, saying--and I'm repeating what I said earlier, but saying that there's this sustained drop from these reforms moving forward, that everything shifted down, we don't find that to be intuitively reasonable. I can't explain to anyone why that would be the case, it doesn't need--the reforms were for two hundred and fifty--sorry, $\$ 2,500$ deductible on all BI claimed and some other minor changes. I can't think of any other event in the second half of 2004 that would cause AB cost to decrease by 73 percent; the reforms weren't for AB . I just don't find it intuitively reasonable, no.

MS. GLYNN:
Q. Ms. Elliott, I'd like to bring you to Page 121 of Facilities' Memorandum.
MS. ELLIOTT:
A. Okay.

MS. GLYNN:
Q. And we've highlighted the numbers on the screen, just for ease. It's the exact same document with just some highlights in it.

```
MS. ELLIOTT:
```

A. Right. So I have a red arrow beside 2004-2, so in August 2004, the reforms in this province were implemented. So you can kind of see that, hopefully, across the line, and I highlighted each accident half years that you could compare--you know, starting with 1999, the second half going forward--you know, we could have done the whole column but just not to be so painful -
MS. GLYNN:
Q. So Ms. Elliott, can you walk us through what you see in this data?
MS. ELLIOTT:
A. Sure. So starting with 1999 , in the second half, we see an average, and this is the
average cost of claims for bodily injury. So in 1999, the second half, it was $\$ 45,089$ and then it dropped down to $\$ 38,674$ and then one year later it jumped up to $\$ 75,498$ and onward. And I calculated the percentage changes just out of my own curiosity. So starting with the 45 , dropping down to 38 , it goes -14 percent, +95 percent, -59 percent, +44 percent, - 26 percent, $+19,+5,+39,-17$. So you can see it goes up and down a lot, it's very volatile what the average claim size is going to be, and to me--I call that noise in the data, there's a lot of things changing and it's going up and down. So what FA has done, they've looked at the change for 2004 and they've seen a drop and said, oh, well, that must be the reforms or something that happened, but you can look at the prior period when it increased by 95 percent or it reduced by 59 percent--there's a lot of changes from period to period. And so just isolating 2004 and seeing a decrease there and saying well, that was the reforms and I can measure that, I don't think so. I think there's so much noise in the data, up an down every year, that it's
Q. Ms. Elliott, can you tell us why the average claim size would change so much from year to year?
MS. ELLIOTT:
A. Yes, and one of the things we want to remember when we're looking at the severity of these average claim costs, we're trying to measure what's the percentage change in cost from year to year? So if everybody had a whiplash injury and you wanted to look at the costs in

1999 and 2000 and--once the change in that whiplash injury, you know, and it might be two or three percent a year, the cost going up with--surrounding, if you will--close to inflation or the various heads of damage for a bodily injury claim, but what happens--we only have about 120 claims a year and so one year you could have maybe pretty minor claims and the next year you could have somebody that is a paraplegic, and the next year there could be a different mix of claims. So you could have small claims one year, maybe a real big claim the next year, maybe lots of big claims the next year. You have a small group of claims, and that mix of small claims and large claims changes from period to period, and there's so few of them, that this is what we're seeing, these jumps in the severity. So when we look at--I mean, it's a really good example going from $\$ 38,000$ to $\$ 75,000$; what would be causing that? I think--you know, I'm not positive because we don't have any information that tells us the types of claims in this data, we just know roughly how many claims there are. It is likely that there's a changing mix of

$$
\begin{aligned}
& \text { small claims one year and maybe some bigger } \\
& \text { claims the next year that are causing this } \\
& \text { change. So we're not trying to measure how } \\
& \text { many big claims you have one year, maybe not } \\
& \text { the next year. We're trying to measure the } \\
& \text { change in cost from year to year. So with } \\
& \text { this noise in the data, it's very difficult to } \\
& \text { measure, very difficult. So I think that } \\
& \text { explains why we see these jumps, this mix of } \\
& \text { small and large claims from year to year, } \\
& \text { yeah. } \\
& \text { MS. GLYNN: } \\
& \text { Q. We'll move in a little bit of a different } \\
& \text { direction now. Can you explain the } \\
& \text { differences in your approach and Mr. } \\
& \text { Doherty's, relating to the claims handling } \\
& \text { costs? } \\
& \text { MS. ELLIOTT: } \\
& \text { A. Okay. In the FA filing, the data that they } \\
& \text { have or that they're using to calculate their } \\
& \text { loss trend rates do not include loss } \\
& \text { adjustment expenses, and in our analysis of } \\
& \text { loss trend rates we do include the loss } \\
& \text { adjustment expenses. And so if the change in } \\
& \text { the loss adjustment expenses, the cost to } \\
& \hline
\end{aligned}
$$

handle and to settle the claims, that changed from year to year, it's not too different in the percentage change in costs of the indemnity, including or excluding, you won't get two different--a loss trend rate. And we did some testing to see if there was any difference between calculating a loss trend rate with or without it and we're finding that the difference is kind of immaterial.
MS. GLYNN:
Q. Okay. Did Facility include claims handing costs in its prior filing to determine its loss trend rates?
MS. ELLIOTT:
A. Yes. That was another difference in--between their judgements last year and this year. In last year's filing, they did include the claims handling cost when they calculated their loss trend rate, but in this year's filing, they do not.
MS. GLYNN:
Q. Okay. In your report, Ms. Elliott, we noted that there was some difference in the choice of the loss development factors between Oliver Wyman and Facility. Could you bring us
through bodily injury as an example and tell us how the differences in the choice of the loss development factors affect the loss trend rates that you calculated?
MS. ELLIOTT:
A. Okay. Well, let me just say, first of all, I know it gets confusing between loss development factors and trend factors, how they all fit together. So loss development factors, we apply that to the losses that are reported today to say what will they ultimately be when claims are all settled, and then we take those costs, what we think they'll ultimately be, and put them into the trend model. So the higher those costs are that you estimate with your loss development factor, all else being equal, you're going to get a higher loss trend rate. So that's kind of the connection with loss development factors. If we think they're too high, you're likely getting too high a loss trend rate. So that's the first part, and I think bodily injury is a good example we could look at so we can see a little view, a glimpse, of loss development factors. And there's some exhibit-I apologize, I don't know the number--that's prepared by GISA, the General Insurance Statistical Agency, of their estimate.
MS. GLYNN:
Q. It would be Number 6 in the package provided to -
MS. ELLIOTT:
A. Okay. So this data is--we'll hold right there for a second. This is an exhibit produced by GISA, it is for Newfoundland/Labrador, commercial auto and it's bodily injury. So it's -
STAMP, Q.C.:
Q. Excuse me, miss, we don't have that document. We have--okay, I'm sorry. We'll get it. Thank you.
MS. ELLIOTT:
A. Okay. So GISA provides to the industry its estimate of what the ultimate costs are going to be for each of the accident half year for commercial automobile here in Newfoundland, and they do this for each province. So if we could scroll down to the accident half year

## Page 42 <br> information I wanted to provide, it's an

2012-2, there at the bottom? Okay. So here we see, so this is for losses and loss adjustment expenses--allocated loss adjustment expenses for 2012-2, the very bottom, second column in, GISA has estimated the costs including these allocated loss adjustment expenses, at 3499 , so $\$ 350$ per vehicle. Okay, so that's GISA's estimate including ALAE, and now I'd like to go to FA's exhibit, and I think it's 127 in my notes? Okay. So it's the same time period here, this column--maybe we could go to the top for a moment just to get our bearings.
MS. GLYNN:
Q. Yeah.

MS. ELLIOTT:
A. So this is bodily injury and the second column in from the -
MS. GLYNN:
Q. Ms. Elliott, we have Page 118, but that is the correct reference? We're on the right page here?
MS. ELLIOTT:
A. Yes. That's fine, that's fine.

MS. GLYNN:

Page 44
Q. Okay.

MS. ELLIOTT:
A. So this is bodily injury Newfoundland and Labrador, again this is the commercial data, and the actual costs that FA has estimated for each period, and if we scroll down to see the comparable number--and again, this is just the losses, it does not include the allocated loss adjustment expenses. Again, coincidentally, they have $\$ 349.99$. It's quite coincidental that they're exact, but the GISA data includes allocated loss adjustment expenses and the FA data excludes it. So here we see that FA's number is 350 without the allocated loss adjustment expenses, and GISA's data is 350 with it. So you know, that is related to the loss development factors that are selected by FA.
MS. GLYNN:
Q. And what does this higher estimate on the loss development factor mean for Facility's loss trend?
MS. ELLIOTT:
A. All else being equal, having this higher number of the 350 would lead to a higher loss

| $\text { Page } 45$ | Page 47 |
| :---: | :---: |
| 1 trend rate. | 1 of data? |
| 2 MS. GLYNN: | 2 MS. GLYNN: |
| 3 Q. Okay, and can you tell us how much higher the | 3 Q. It's Page 127. |
| 4 loss and the ALAE per vehicle would be? | 4 MS . ELLIOT |
| 5 MS. ELLIOTT: | 5 A. I think in the GISA exhibit--there we are, |
| 6 A. It ranges, and of course, the actual costs | 6 yeah. Okay, all right. So what we have on |
| 7 would vary from year to year, but for bodily | the top part of our screen are the factors |
| 8 injury, it's easily between 8 to 10 percent of | that are selected by FA using--and they've |
| 9 the cost, so if you want to exclude allocated | presented their data with loss experience |
| 10 loss adjustment expenses, you take 8 to 10 | 10 only, they exclude ALAE, and on the bottom |
| 11 percent off. | 11 part of our screen here we see GISA's selected |
| 12 MS . GLYNN: | 12 factors and various averages, but the box are |
| 13 Q. So if FA excludes ALAE and gisa includes ALA | 13 the selections made by GISA, and they're using |
| 14 can you explain why both numbers are 350? | 14 a weighted average of all periods. And when |
| 15 MS . ELLIOTT: | 15 you compare the factors that GISA has |
| 16 A. Okay. I can, and that's a little more | 16 selected, 1.134, and then you compare the |
| 17 complicated, so we're going to take you to | 17 factors that FA has selected, and you go |
| 18 some exhibits to show why that's occurring. | 18 through--I mean, barring that there was |
| 19 Okay, I believe we have an exhibit which shows | 19 rounding, the GISA presents three decimal |
| 20 the bodily injury loss development factors | 20 places, but if you, you know, work through |
| 21 that are selected by FA, and those that are | 21 that, you'll see that they appear to be |
| 22 selected by GISA. | 22 identical. It appears that FA took the GISA |
| 23 MS. GLYNN: | 23 factors for each of these periods from 12 to |
| 24 Q. So can you bring us to the page in FA's | $24 \quad 18$ as they go across here that are based on |
| 25 Memorandum, please? | 25 losses and ALAE and use those. So rather than |
| Page 46 | Page 48 |
| 1 MS . ELLIOTT: | 1 taking, which they present, the weighted |
| 2 A. So this, I believe, is FA's report and this is | average of all periods, FA presents that |
| 3 for bodily injury, and it's showing for each | number--so for example, in the 12 to 18 period |
| $4 \quad$ six-month incremental period from 6 to 12 and | the number is 1.1274 , it's kind of in the |
| $5 \quad 12$ to 18, these are the factors that are | middle of all that, but they didn't select |
| 6 selected. So the row that says final | that. They picked up GISA's, based on 1.134. |
| 7 selection and then the product row is the | So it would appear that FA used GISA's |
| 8 multiplication of all those factors. So each | factors, which are based on losses and AlaE-- |
| 9 factor that FA has selected is under the final | that was not stated in the filing, and they |
| 10 selection, and what's interesting if, for | 10 presented the experience based on losses only, |
| 11 example, you look at 12 to 18, they've | 11 chose not to use them but, it appears, used |
| 12 selected 1.1340, but when you look at the | 12 the GISA factors, and that would be the case |
| 13 averages that they have presented as | 13 for all the periods except for the 6 to 12 |
| 14 alternatives that they're going to select | 14 period. GISA's factor in the box is 1.322, |
| 15 from, they don't match up and you can go | 15 their factor reflects seasonality, and in the |
| 16 across each column and say, well, they're | 16 case of FA, they've selected 1.663, which is |
| 17 close, but they don't match up. And now if we | 17 different--this is the only column that |
| 18 could pull up GISA's selected factors, and I'd | 18 appears to be different than GISA, and as a |
| 19 like to see that lined up. | 19 result they have higher loss development |
| 20 MS . GLYNN: | 20 factors. So I hope that explains some of the |
| 21 Q. That's back to Exhibit 6. | 21 selection that has been made by FA and these |
| 22 MS. ELLIOTT: | 22 higher loss development factors can contribute |
| 23 A. Okay. Thank you. | 23 to higher loss trend rates and it can explain |
| 24 STAMP, Q.C.: | 24 part of the differences between the factors |
| 25 Q. What page are we looking at in the first piece | 25 that we're determining--loss trend rate |

factors that we're determining and those that FA are determining.
MS. GLYNN:
Q. And the differences in your loss development factors, are they material to the findings?
MS. ELLIOTT:
A. Yes. They can be. I mean, we had a discussion at the prior--in our report, we raised there were differences with accident benefits, and although accident benefits is a small coverage, there are some larger differences there. And in this case here, I believe that these larger factors that FA is selecting, that are generally larger than if they had used their own experience, it's leading to higher loss development factors that are leading to higher loss trend rates and a higher rate indication, yeah.
MS. GLYNN:
Q. Ms. Elliott, can you explain the time period used by Facility and how that is different from the time periods that Oliver Wyman used?
MS. ELLIOTT:
A. Yes. So Facility, we've used 20 years of experience, and in their approach they select
a regression--they choose to include a reform parameter in their model for the August 2004 changes, and then as a result of that, they are effectively splitting their time period of the 20 years between--prior to this August 2004 and after, so effectively, they have an eight-and-a-half year period of what they're using to select their loss trend rate, and because they split this 20 -year period by these August 2004 reforms, it effectively forces FA into--now they just have eight-and-a-half years from the August--from the second half of 2004 to the end of 2012 , they have a shorter period of time now to use this eight-and-a-half years. In our work, Oliver Wyman, we select 10 years of experience and five years of experience in making our selections, yeah.
MS. GLYNN:
Q. In Mr. Doherty's testimony, he stated that he thought Oliver Wyman agreed that there was a change in the bodily injury frequency trend beginning in 2004. Is that correct?
MS. ELLIOTT:
A. No. That is not correct. That was a
misstatement. Well, they stated what they understood, but that's not a correct understanding, yeah.
ms. GLYNN:
Q. So do you agree that there was a change in the bodily injury frequency trend?
ms. ELLIOTT:
A. No. We don't agree, and what we were trying to express--we made a typo in a question that we presented to FA , and what we were trying to ask FA was that we were seeing in other provinces that there was a decline in the frequency rate that started in around 2000/2001, and we were seeing this in other provinces, so the purpose of the question was to ask FA were they seeing a decline in the frequency rate starting in that 2000 period, and instead of typing 2000, we typed 2004 and of course, you know, rightly so, FA didn't understand our question.
MS. GLYNN:
Q. Facility has also stated that its fits are superior to Oliver Wyman's, can you comment on that?
MS. ELLIOTT:
A. Well, I don't accept the description that any of the fits with this commercial data are superior, great, good--any word, adjective you'd like to use. The data is very difficult to work with. In terms of the frequency fit, I think ours $R$ square and FA's $R$ square, they're really--I can't see that their fit is any better, we're looking at a frequency trend rate running from -5 to -6 percent range, and in terms of the severity that FA has presented and describing that as superior, I wouldn't agree. We looked at how the claims changed from $\$ 75,000$ to $\$ 35,000$, these average costs, very difficult to fit, and FA has stated in response to our questions that they struggled with the fit, that the P-Tests were poor--the T-Tests were poor for some of the parameters in their model. In fact, in the prior review from FA, it found that they couldn't determine what the fit was, they couldn't use the data. So describing any of these trend models as superior I don't think is a really appropriate description. There's a lot of uncertainty in the loss trend rates.
MS. GLYNN:

```
    Q. Okay, and these loss development factors that
        we just discussed that were higher in
        Facility's than Oliver Wyman's, how do they
        come into play in this superior fit
        discussion?
MS. ELLIOTT:
    A. Well, if we're taking into question that
        underlying data that's used to calculate these
        loss trend rates, so if we're taking into
        question those loss development factors, then
        it's pretty hard to have a discussion about a
        superior fit if you're questioning the data
        that's used in the model to calculate this
        superior fit, so.
MS. GLYNN:
    Q. Are you trying to pick a loss trend model that
        has the best R squared?
MS. ELLIOTT:
    A. No, and I think that's important to reiterate
        here. What we're looking for is to strike a
        balance between responsiveness to the data and
        stability for each review that we prepare--
        each loss trend review that we prepare each
        six months. So we're not trying to look at it
        and say, okay, I've got the best R square,
```

this model is an R square of 45 and it's better than my other $R$ square of 42 , so I'm going to pick it, or whatever the number is. We're not attempting to do that here because the--with different time periods, different exclusions, the results change dramatically. So what we're trying to do is have a responsive and stable approach, and strike a balance of that, and that's why we have an averaging approach, yeah.
MS. GLYNN:
Q. I'd like to bring up Exhibit 4 from the Actuarial Memorandum. It's actually Information Item No. 5. From last year's filing, sorry. Thank you. And Ms. Elliott, can you bring us through the differences in FA's selected loss trends from this year and last year?
MS. ELLIOTT:
A. Okay. All right, so the--I guess there's a couple of differences in--from the prior review and this review. First is the time periods that are used. There are different time periods used in last year's review compared to this year's review, and the time
periods are different for the different coverages in last year's review. A second issue is that in last year's review, FA found that the reform factor for the 2004 reforms had no impact on claim costs; this year they have determined that they do have a very large impact. Another item is that in last year's review, for bodily injury severity and for accident benefits, FA found that it couldn't figure out a loss trend rate and so chose to use a private passenger experience for accident benefits, for both frequency and severity, and in the case of bodily injury, it chose to use a private passenger for severity. And then there's one final difference--is that for uninsured auto last year FA used the third-party liability selection, and in this year's filing, they've chosen to use the accident benefits selection.
MS. GLYNN:
Q. So that's the differences in how they chose their trend rates. Can you summarize the differences in the value of those loss trend rates?
MS. ELLIOTT:

Page 56
A. Yes. So last year, they were calculating a past trend rate of 2.4 for BI, a future of 4.0, and just as a reminder we looked at earlier, the lost cost from 2011 to 2012 decreased by 17 percent--we talked about that earlier. So even though we have a decrease in the loss trend rates, FA has now presented in this filing a higher trend rate of +4.4 . Property damage last year was 3.8 for the past, 1.9 for the future. Their new trend rate is 2.4 percent and in fact, the lost cost from 2011 to 2012 decreased by about 12 percent. And for accident benefits, last year they had 1.6 percent for a past rate and then they had 4.2 for a future rate, and this year they have +7.6 and the lost cost this year for this coverage also decreased for commercial auto by seven percent.
MS. GLYNN:
Q. Can you explain how Facility's rate indications would change if they had followed the Board's guideline, loss trend rates developed by Oliver Wyman?
MS. ELLIOTT:
A. Yes. It's presented in our report. It would
decrease by approximately 27 percentage points.
MS. GLYNN:
Q. Thank you. Going to change gears here now, and we're going to move into the credibility standard, and this was identified as an issue in your report. Can you explain why the change in the number used for the credibility standard is an issue?
MS. ELLIOTT:
A. As I think--some of our introductory comments that I'd made, one of the things that we're looking for is consistency in the prior report and the current filing, and in this filing FA has changed its full credibility standard, so how many claims you need to say that your data is fully credible and reliable, and in this filing FA has lowered that number. So they've lowered it, which gives more weight to its own experience for taxis, and as a result, it increases their rate indication. But the issue is, for us, is that there's a change in the filing without any support for the change in that standard, so that was raised as an issue in our report.

Page 58
MS. GLYNN:
Q. And what impact does the change in the credibility standards have on the rate indications?
MS. ELLIOTT:
A. It's estimated about--that change caused a seven percentage difference in the rate indication. So if they'd used the standards from last year, it would be about seven percentage points lower, the rate indication.
MS. GLYNN:
Q. Okay. Complement of credibility was also identified an issue. So can you detail the difference in the complement of credibility applied by yourself and by Facility?

```
MS. ELLIOTT:
```

A. Okay. Now we don't have any objection with the methodology that FA is using for the complement of credibility approach. Our issue is that FA is assuming that their current rates are inadequate. So in the prior filing, we had done our analysis and we estimated the rate indication for FA could support a +50 percent change. FA proposed a +50 percent increase, and the Board approved a +50 percent
increase, so in our view there was no rate inadequacy. The 50 percent change that was approved was supported and there would be no rate inadequacy, but in this rate filing, FA has come forth and said we have a rate inadequacy from our prior work, and we don't agree with that assumption that FA is putting forth that their rates are inadequate.
MS. GLYNN:
Q. And what impact does this change have on the rate indications?
MS. ELLIOTT:
A. So if we make the assumption that the prior rates, with the rate level that the Board approved, that the rates were adequate, the indication was +50 , the Board approved +50 --if we, you know, assume that's correct, then that change, making that assumption, that would reduce the rate level indication that FA has presented by about 24 percentage points.

## MS. GLYNN:

Q. Okay. I'd like to bring up Page 20 of your report, Ms. Elliott, and can you summarize-here you talk about uncertainty, and I'd like you to summarize those issues of uncertainty
for us.
MS. ELLIOTT:
A. So I guess the first issue that's important to remember if that we're dealing with very limited data. We're dealing with taxi data, very small volume, and it's volatile, so that adds considerable uncertainty to the calculated rate indications, and there are some other factors that--when you determine what the rate indications are, that we also have to think about the uncertainty of those factors, and one is--the loss development factor, is that FA applies to its own taxi experience, their base--so FA is including the last five years of experience in determining its rate indications, so from 2008 to 2012, the taxi losses, and it has to estimate what those costs will ultimately be with these loss development factors. But the loss development factors that it uses to apply to the taxi experience, it's based on its non-private passenger experience, and this is calculated for--I think we can go to the next page, please, this is calculated separately for bodily injury and property damage using that

So the third column, then, we have the accident year, we've got the claims that are reported at the end of 2012 that was provided in last year's report, and what they estimated the ultimate cost would be. So let's look at the middle row, 2009. At the end of 2012-sorry, June 2012, in last year's filing they had that data, they estimated the cost at $\$ 2.6$ million. One year later in this filing, going across that row, their estimate of what the ultimate cost would be is $\$ 2.3$ million, and that difference in red on the right is $\$ 304,000$. That's a 12 percent decline. So all those red numbers mean, in the far column, that the costs that they estimated this year, one year later, for taxis is less than what they estimated last year. And this again adds to the uncertainty of the finding, the changes that we have from year to year. It's very hard to estimate what those costs are, it adds to the uncertainty. So it's just another example.
MS. GLYNN:
Q. Ms. Elliott, is there anything else that you would like to cover?
have bodily injury and we have property damage, and have to combine that together, weight that together to apply in the TPL because we only have TPL taxi experience. So even if you accept FA's commercial loss trend rates, we're applying it to taxi data, uncertainty, and we have to combine the BI and PD into TPL to apply it because you only have taxi as TPL--more uncertainty.
MS. GLYNN:
Q. Ms. Elliott, I'd also like to bring up the response to Question 3 from Facility dated April 9th.
MS. ELLIOTT:
A. Okay.

MS. GLYNN:
Q. And I wonder if you can explain the charts that we see here?
MS. ELLIOTT:
A. Sure. So in this question, we're asking FA to present what were their estimates for taxi experience, what the costs will ultimately be from the prior filing to this filing, so the top matrix is the TPL coverage and the bottom one is AB. Well, we can just focus on TPL.

## MS. ELLIOTT:

A. Let me look at my notes here, see if I missed anything from. I think what we have here is a filing that's presented with a 50 percent rate increase, and the FA's taxi experience has been poor, but we've just, last year, reviewed--the Board--and we reviewed the filing and the Board approved a 50 percent rate increase for taxi experience. So we thought that the poor experience was addressed with that large rate increase last year. So now we have FA presenting another rate filing with a proposed increase north of 50 percent and the suggestion that they will be coming in for additional rate increases next year again. And so I think the--you know, the key concern is what can be done to curb these costs, contain these rate increases? Because they're not sustainable. And so I would say that it's important for all parties to look at what can be done to contain the rate increases that are being proposed, and our focus has been on loss trend rates and the losses, but there are other components to the whole premium that's being charged. And I would suggest that it
would be very helpful if FA took the initiative to look at the costs for underwriting, look at the costs for claims handling, look at the costs for commission-look at those costs and say how can I find a way to bring down this premium? And the FA, in its role, could take the initiative to find ways other than one big rate change, you know, last year, asking for another one this year and suggesting that they're coming back next year. I think it's not sustainable, the rate increases that are proposed here, so somebody has to sit down and think about what other ways can--what else can be done to contain these costs, and it cannot be just one big rate increase after another, so.
MS. GLYNN:
Q. Ms. Elliott, we have covered out material much quicker than we had estimated. So we are actually ready to turn you over to Mr. Stamp.
MS. ELLIOTT:
A. Okay.

MS. GLYNN:
Q. We had discussed taking a break at 11:00, so I think the timing worked out pretty good.

## ChAIRMAN:

Q. So we'll adjourn until 11:25, is that correct?

MS. GLYNN:
Q. Does that work?

CHAIRMAN:
Q. That agreed?

STAMP, Q.C.:
Q. That's fine.

MS. GLYNN:
Q. Yes. Thank you.

Chairman:
Q. Okay.
(RECESS)
CHAIRMAN:
Q. So I believe it's over to you, Mr. Stamp, if I

STAMP, Q.C.:
Q. That's right. We're taking our crossexamination first.
Chairman:
Q. Yes.

Ms. PaULA ELLIOTT, CROSS-EXAMINATION BY MS. JENNIFER
newbury
MS. NEWBURY:
Q. Thank you. Hi, Ms. Elliott. I will be asking

Page 66
the questions to--for you this morning. I'm going to first start with the general questions, probably more of an overview on the trend selection process, and I wonder if you can state what your goal or objective is in the trend selection process that you have chosen?
MS. ELLIOTT:
A. Our goal in it?

MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. Well, we're preparing our reports, our review, for the Board, these are Board guidelines, and these are loss trend rates that are provided for insurers to use if they so choose to, and we're trying to provide loss trend rates that are both responsive to the data and stable from review to review that we prepare.
MS. NEWBURY:
Q. And the actual model that you've chosen, the trend selection process that you use, is this your own as opposed to process described-prescribed by the Board or anyone else?
MS. ELLIOTT:
Page 68
A. That's correct. The Board does not prescribe the process, yeah.
MS. NEWBURY:
Q. Okay, and there were no directions or guidelines in terms of the detail or the content of that process?
MS. ELLIOTT:
A. That's correct.

MS. NEWBURY:
Q. And now I understand that you have done similar things for other jurisdictions such as the Nova Scotia Board. Is the trend selection process that you use in your trend reports for Nova Scotia also something that you've derived on your own?
MS. ELLIOTT:
A. Yes. We're not given any direction from the Nova Scotia Board in that process.
MS. NEWBURY:
Q. Okay. I'm going to refer to Page 11 of your report, the May 16th, 2004 report, and in that report you state that "Oliver Wyman's selected loss trend rates are based on various regression analysis over different periods of time spanning ten years or less, with data

|  | Page 69 |  | e 71 |
| :---: | :---: | :---: | :---: |
|  | exclusion and use of parameters that we find |  | commercial data is due to its volatility and |
| 2 | reasonable," and I understand from your |  | uncertainty, we're trying to be both--strike a |
| 3 | evidence and from your report generally that |  | balance between the responsiveness and the |
| 4 | you are using only ten years, is that correct? |  | stability to our findings. So in this |
|  | MS. ELLIOTT: |  | particular circumstance, we're choosing to |
| 6 | A. The loss trend rates that we present in our |  | look at ten years. |
|  | port as using ten years and five years of |  | MS. NEWBURY: |
| 8 | experience. |  | Q. Okay, and was there anything about the |
| 9 | MS. NEWBURY |  | particular analysis itself that confirmed that |
| 10 | Q. And five years | 10 | you would keep the ten-year approach for this |
|  | MS. ELLIOTT | 11 | particular review? |
| 12 | A. But within the data that we look at, we have |  | MS. ELLIOTT: |
| 13 | 15 years of experience |  | A. Not that I recall, that there was something |
| 14 | MS. NEWBUR | 14 | specific, no. |
| 15 | Q. Okay. So you look at 15 years of experienc |  | MS. NEWBURY: |
| 16 | data, but the loss trend rates are base | 16 | Q. Okay. So basically this choice of ten years |
| 17 | on ten years and five years? | 17 | was basically a pre-determined choice because |
| 18 | MS. ELLIOTT | 18 | you've used this in previous reviews, you |
| 19 | A. That's correc | 19 | wanted to stick with that approach? |
| 20 | MS. NEWBURY: |  | MS. ELLIOTT: |
| 21 | Q. Okay, and what would be the problem with using | 21 | A. What we like to do, as I said, is we look at |
| 22 | something greater than ten years for the trend | 22 | all the data, all the experience, the 15 |
| 23 | analysis? | 23 | years, and one of the things that I find quite |
| 24 | MS. ELLIOTT: | 24 | interesting is to slice it off to look at the |
| 25 | A. I don't know if you'd call it a problem, it's- | 25 | first five years, the middle five years and |
|  | Page 70 |  | Page 72 |
|  | -we've taken an approach here to look at ten |  | the most recent five years, and see what those |
| 2 | years or less, yeah. | 2 | findings are. And also, you know, looking at |
| 3 | MS. NEWBURY: | 3 | the ten years of experience and the five years |
| 4 | Q. Okay. So if you had chosen, say, 12 years or | 4 | of experience, we're trying to see are there |
|  | 15 years, would that be an equally valid |  | patterns that are changing, and we're |
| 6 | approach? | 6 | reviewing the experience to see, to try to |
|  | MS. ELLIOTT: | 7 | measure, what are the patterns, what are the |
|  | A. I think the issue when you choose a time |  | changes going on. And if there is something |
| 9 | period, you want to be consistent in that | 9 | that we found where we felt the data was |
| 10 | review for that particular set of data that | 10 | credible enough and it was telling us |
| 11 | you're reviewing, from review to review. | 11 | something, that perhaps ten years was wrong, |
|  | MS. NEWBURY: | 12 | perhaps we should only be looking at five |
| 13 | Q. Okay. So if you had decided, for example, a | 13 | years, then we would take that into |
|  | number of years ago, I'm going to choose ten | 14 | consideration and we would explain our |
| 15 | years, you're saying that you should use that | 15 | rationale for the changes. So in this |
| 16 | each and every year afterward? | 16 | circumstance, we're starting off with ten |
|  | MS. ELLIOTT: | 17 | years and five years in our review, and if |
| 18 | A. No. I think that's maybe a rigid statement, to | 18 | evidence was to present itself that, you know, |
| 19 | say that we would never consider anything | 19 | we thought, gee, we should do something |
| 20 | else. We do, we have 15 years of data, and I | 20 | different, then we certainly would consider |
| 21 | definitely will run the button looking at all | 21 | that. And we also present our report to the |
| 22 | 15 years and many other ways, and sometimes I | 22 | insurers for their comment, and if we had |
| 23 | just look at the top five, the middle five, | 23 | comments in from the insurers that said hey, |
| 24 | the bottom five. We run many looks at it, but | 24 | wait a minute, we think you should be doing |
|  | one of the things that we have in this | 25 | this, then we would look at that and consider |


|  | Page 73 |
| :--- | :--- |
| 1 | that, but we haven't received that. |
| 2 | MS. NEWBURY: |
| 3 | Q.So a few questions arising out of that, Ms. <br> 4 |
| Elliott. First of all, you've mentioned that <br> 5 | you use 15 years of data, why not use 20? I <br> 6 |
| 7 | understand that there would be 20 years of |
| 8 | MS. ELLIOTT: |

an analysis of 15 years, 12 years, 13 years, 7 years. Any number, we do it.
MS. NEWBURY:
Q. Right. I understand from your evidence this morning that you do, indeed, have a flexible model, but did you actually do the 15 -year trend analysis in this case?
MS. ELLIOTT:
A. Yes. I spent considerable time going through the analysis. We run many, many versions, and this data actually takes a lot of time to select and to review and understand that patterns in the data, because it's so volatile. I can make a comparison for you. In other provinces like Ontario where we have a large sample of data, it is much easier because we get more consistent trends. Here, because the data is so thin, we're dealing with so few claims--I said there's about 120 or so a year, it's very difficult, it's very challenging to pick trends. So we end up looking at a lot of different alternatives here because it's so challenging.
MS. NEWBURY:
Q. Okay, and in the 15 -year trend analysis that

Page 75
you did, how many outliers did you exclude, how many data points did you exclude?
MS. ELLIOTT:
A. I can't recall that.

MS. NEWBURY:
Q. Okay. Have you done any--selected trend rates that are based on other than ten or five years?
MS. ELLIOTT:
A. In some circumstances. Are you referring to commercial auto here in Newfoundland?
MS. NEWBURY:
Q. Just generally speaking. I'm trying to ask, now, general questions about your approach and the choices that you've made, and you've indicated that you generally pick a consistent approach. I'm wondering if, in other jurisdictions, you've provided reports and produced reports based on a trend analysis other than for ten years and five years.

## MS. ELLIOTT:

A. Yes. Definitely different coverages that are--say like collision coverage, we would typically use fewer years, definitely, there. Yeah. For a variety of reasons or external
forces, sometimes data. There could be changes that have gone on in a certain province. So yes, we would definitely consider the environment when we're running our analysis, yeah.
MS. NEWBURY:
Q. Okay, and have you ever done this for the Board here for a Newfoundland benchmark? MS. ELLIOTT:
A. I don't have at my fingertips all the reports that we've prepared, but it's certainly possible that we might have.
MS. NEWBURY:
Q. And in doing your 15 -year trend analysis, which I understand that you did do in your review for this particular rate application, did you determine whether there was a consistent trend or more than one trend?
MS. ELLIOTT:
A. Well, we did not choose a 15 -year trend in this, and I don't have that number, I don't recall what that value was, yeah.
MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:

```
A. I would hazard a guess given the--and I guess it's an educated guess, given the differences that we've seen in the loss trend rates for this commercial auto in Newfoundland, how it can change so significantly whether you're using ten years of data, five years of data, exclude this point or exclude that point--I'm pretty sure we'd get a very different number if we looked at 15 years as well.
MS. NEWBURY:
Q. And you have no sense as to whether that would be a higher number or a lower number?
MS. ELLIOTT:
A. Not off the top of my head. I cannot recall. MS. NEWBURY:
Q. If you have a situation where you don't think the trend has changed over a period of 20 years, would you not get a better estimate of the trend if you use all the 20 years of data if you believe that there is no change in the trend?
MS. ELLIOTT:
A. Well, if the data is stable enough, then you're going to see more consistency or you can develop and understand the rationale for
```

the changes in the data. So if you have coverage where there've been no reform changes, there has been no weather issue, everything is nice and smooth, then you can often run a 20 -year trend and a five-year trend because that data is so stable and large and voluminous that you get pretty consistent trends. Certainly you can do that, but that is not the case with this data. This data is not stable at all.
MS. NEWBURY:
Q. Okay, and you're referring to the commercial industry data?
MS. ELLIOTT:
A. Yes. That's been used here, yes.

MS. NEWBURY:
Q. Yeah, and I understand from your evidence this morning, and correct me if I'm wrong, but my understanding is that the more recent the data, the more volatile it is. Is that correct?
MS. ELLIOTT:
A. No. Not the more recent the data, the more volatile it is. That's not what we're saying in terms--the estimates of what the losses are
for the more recent experience are subject to change. That's different than being volatile.
MS. NEWBURY:
Q. Okay, and when you're referring to, you know, the concerns of using 20 years of data, about the volatility, which type of volatility were you referring to?

## MS. ELLIOTT:

A. Well, in looking at the 20 -years of data, and we had a chart out earlier today that I'd highlighted the yellow, and you can see the changes in the average claim size, that it went up and down for really all the periods. So you can see that volatility in the change in that average severity amount over the entire period.
MS. NEWBURY:
Q. So the change in the average severity, and is this based on commercial-industry data or is it taxi? I'm just trying to make sure I understand.

## MS. ELLIOTT:

A. Well, we'll make that clear here. The loss trend rates that FA used in its rate filing is based on commercial industry data in

Newfoundland.
MS. NEWBURY:
Q. Yeah, and that's the volatility that you're referring to now?
MS. ELLIOTT:
A. There is volatility in that commercial data, yes.
MS. NEWBURY:
Q. Okay, and so you're saying that the volatility that would cause you some concerns in using all 20 years of data is due not necessarily to how the claims costs are assessed or estimated, which would be a recent type of an issue--the more recent that type of data, the more volatile that would be, but you're saying it's due to the fact that there have been larger, you know, changes, fluctuations over the years?
MS. ELLIOTT:
A. Right. There's two issues with the data, and I'll reiterate what we had said earlier today. The data for each accident year changes. So once accident year, we looked at the average severity, it was $\$ 75,000$, one year later it was $\$ 35,000$. So there's a lot of volatility
in the data. The other issue is that when we're dealing with these loss amounts that we're trying to fit a trend line over, they're estimates, they're subject to change, so data--it can take a number of years for large claims to settle. So the more recent periods of time are subject to more change in the estimates, not necessarily the volatility for that period. The mix of the small or the large claims are what they are for that year, but it's the estimates of those claims for the more recent years that are subject to change as those claims are handled and settled.
MS. NEWBURY:
Q. Okay, and then back to the 20-years issue, why you would not use 20 years of data. So the volatility that you're referring to, you're not saying that there are changes in the trends, that thee was one trend earlier and a different trend later on. You're saying that it was just too volatile to be reliable?
MS. ELLIOTT:
A. No. I'm not saying that it's too volatile to be reliable, I'm not say that--what we're expressing is that over the 20 -year period,

MS. ELLIOTT:
A. No, no.

MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:
A. The change from year to year--one is a stable issue, you don't really have stable data. So one is the change from year to year. We had a very good example earlier, I'm going to repeat it again. We had $\$ 75,000$ one year, $\$ 35,000$ the next. That's volatility from year to year. Another concern in dealing with this data, and with bodily injury data, it takes a long time for these claims to settle and close. Some of the claims are complicated, someone could be a paraplegic, there's death injuries, all sorts of claims that are very difficult to handle and close and they take a long time. So there could be a claim that's from seven years, ten years ago, even 15 years ago that still isn't closed. So the estimates of the claims are subject to change over time. MS. NEWBURY:
Q. Right, and that's the second type of volatility, but the - year period, there is a lot of volatility in that average claim size.
MS. NEWBURY:
Q. Okay, and but that same volatility will be there for more--a shorter period of time than a longer period of time?
MS. ELLIOTT:
A. I think what you're--if I'm understanding you correctly, the more recent estimates, the claims are newer.
MS. NEWBURY:
Q. Yeah.

MS. ELLIOTT:
A. So if the claim is from 2002, those estimates are the more recent estimates and, you know, they're subject to--those claims are open, they have to be settled and closed. That's different than the volatility aspect that we're getting at.
MS. NEWBURY:
Q. But are you saying that one type of volatility is in the first 15 of that 20 years, and that a different type of volatility occurs in the last five of the 20 years?

## MS. ELLIOTT:

A. And that applies to all lines of business, which is different than the volatility. If we look at bodily injury in Ontario, much larger database, it doesn't have that same volatility from year to year. We don't look at one year the average is 75 and the next is 35 ; they're not the kind of numbers we have to deal with there, but n both cases, the estimates for 2012--at December 2012, when we look at that data, it's tough to estimate in Ontario, in Alberta, in Newfoundland. New claims are subject to change because the claim is opened, the claims adjuster--you know, they haven't closed it. So that issue applies no matter what line of business we're looking at.
MS. NEWBURY:
Q. Sure, and I do understand what you're saying. I'm just trying to find out what is it about the volatility--not the difficulty in estimating the claims costs, but the volatility over time, and it sounds like it's from the small sample size here in this province. What is it about that volatility that would suggest that you shouldn't look at
a full 20 years? Would that not actually help you in dealing with the volatility issue, if you look at a larger amount of data?
MS. ELLIOTT:
A. No. No, because then--I mean, we had an example earlier, I can find it again. You know, we had $-14,+95,-59,+44,-26,+19$. Having more of that doesn't help me.
MS. NEWBURY:
Q. But it's not eliminating the volatility problem to ignore the first five or ten years of that 20 -year period.
MS. ELLIOTT:
A. It's certainly not eliminating the volatility problem. You can't eliminate the volatility problem.
MS. NEWBURY:
Q. Right.

MS. ELLIOTT:
A. You know, if you have data that's up and down like a yo-yo, like $+95,-14$, having more of it doesn't make it any better.
MS. NEWBURY:
Q. Okay, and having less of it doesn't make it
any better either?

Page 86
MS. ELLIOTT:
A. Sure doesn't. No, sure doesn't.

MS. NEWBURY:
Q. Ms. Elliott, would you be able to provide any benchmark rate filings for this province in the last ten years where you did not use the ten and five years as your--for bodily injury only?
MS. ELLIOTT:
A. I'm sorry--benchmark rate filings?

MS. NEWBURY:
Q. Yeah. Sorry, not your--your reports for benchmark reports--your benchmark reports.
MS. ELLIOTT:
A. Are you referring to loss trend reports?

MS. NEWBURY:
Q. No. So twice a year, I understand that you provide a benchmark report for the Board, and you've been doing that for a number of years.
MS. ELLIOTT:
A. Loss trend reports, not -

MS. NEWBURY:
Q. Loss trend reports.

MS. ELLIOTT:
A. Yeah.

MS. NEWBURY:
Q. Okay. We've been referring to them as benchmark reports, but it's your report to the Board twice a year, the end of June, the end of December each year, and you propose what the trend rates are, is that correct?
MS. ELLIOTT:
A. We provide a report that then is provided to insurers for their comment, if they'd like to make changes. I have to acknowledge there have been very few comments, and I'm sure there's copies of all those reports that could be provided, um-hm.
MS. NEWBURY:
Q. And those reports are provided for the purposes of setting the benchmark rates, is that correct?
MS. ELLIOTT:
A. No, there's--I'm afraid there's no benchmark rates. There's some confusion here; there's no benchmark. There's loss trend rates that we prepare. Now -
MS. NEWBURY:
Q. That you prepare. What is the purpose of that?

Page 88

## MS. ELLIOTT:

A. Of the loss trend rates?

MS. NEWBURY:
Q. Of you providing that to the Board?

MS. ELLIOTT:
A. Sorry, are you asking about benchmark rates that we used to prepare for the Board or loss trend rates?
MS. NEWBURY:
Q. Trend rates.

MS. ELLIOTT:
A. Loss trend rates?

MS. NEWBURY:
Q. Yeah.

MS. ELLIOTT:
A. Well, we provide the loss trend rates for the Board. We do our analysis, the report is sent to the insurers for their review and comment, there's, I think, a two-week period for that. If there's any comments or consideration, we review that and then the loss trend rates are provided to the insurers for their use.
MS. NEWBURY:
Q. Okay, and what I'm asking that you do is to identify in those reports any reports that
relied upon other than ten years and five years for bodily injury. (REQUEST)
MS. ELLIOTT:
A. Okay.

MS. NEWBURY:
Q. Thank you. Now I'm going to refer to your report at Page 4, and that's the March 16th report.
MS. GLYNN:
Q. Ms. Newbury, while you're looking for that, can I just confirm for that undertaking that Ms. Elliott just provided, would you be looking for those for commercial and private passenger or just for -
MS. NEWBURY:
Q. For both, yes.

MS. GLYNN:
Q. For both? Thank you, and for the last ten years?
MS. NEWBURY:
Q. Yes, that's correct.

STAMP, Q.C.:
Q. So the twice-yearly report.

MS. GLYNN:
Q. Yeah. For commercial and private passenger.

Page 90
Thank you.
MS. NEWBURY:
Q. You've noted in your report--it's actually the report CAOWOO1. That's Page 4 of that report. So in the second paragraph, you state that "while the five-year period is generally more responsive to changing patterns, due to the small number of claims and the continuing volatility, we do not find the five-year report sufficiently stable and therefore give consideration to the ten-year period." When you're referring to changing patterns, are you referring to changes in trends, and if not, what are the patterns that you're referring to there?
MS. ELLIOTT:
A. The changing patterns is we're trying to measure--I think I spoke to changing patterns earlier today, we're trying to measure the change in the frequency rate, the severity rate, the lost costs. So how is that changing over time, how are those costs changing over time, that's what we're trying to measure in a loss trend rate.
MS. NEWBURY:
A. Well, we're trying to measure loss trend rates, we're preparing a report every six months with new data. So what we're trying to measure and present in our reports every six months is a measure of that changing pattern. So the loss trend rate is looking at the costs of the data that's available, and how are those costs changing, what is that changing pattern? Maybe today, the loss trend rate we might calculate for a coverage is +2 percent and maybe five years ago when we did it, the changing pattern, the data, indicated a +3 percent. So there's changing patterns. That's why we look at the new information every six months to see, as best we can, what is that changing pattern. So with the new information that's provided, we try to assess that.
MS. NEWBURY:
Page 92
Q. Okay. So it is a change in trend?

MS. ELLIOTT:
A. Well, we're trying to measure what that change is, yes, in each report.
MS. NEWBURY:
Q. Okay. So it is a change in--so changing pattern refers to a change in the trend?
MS. ELLIOTT:
A. That's what we're trying to measure, yes. MS. NEWBURY:
Q. Okay, and how often over a 20-year period, you know, just generally speaking, would you expect to see a change in the pattern or changes in the patterns? Would you see that frequently over a 20 -year period or on occasion over a 20 -year period?
MS. ELLIOTT:
A. I think there's two different things here. You can see a change in direction, and so in some cases you could see, due to the environment, whatever the reasons might be, you can see a pattern where frequency rate is increasing and then, you know, for whatever reason, things change and you can see a frequency rate declining, and that occurs,
yes. And how often? It depends on the environment. There are a lot of external factors that can affect a change in direction of a pattern.
MS. NEWBURY:
Q. Um-hm, and is it that every six months when you do your new report, what you're observing actually is a change in a pattern or are you just better, you know, fine tuning a pattern that is there because you now have more data, you can better see a pattern that was already in existence at the time, but maybe you didn't fully understand it because of more limited data.
MS. ELLIOTT:
A. I'm not sure what you're asking me there specifically, but I'll try to answer as best I can. We get new information that's available every six months. We review that information to try to assess what the lost cost trend rate is. The lost cost trend rate is a measure of what we think that changing pattern is, on average, from the historical data that we're reviewing. New information gives us new insight. GISA provides this data every six

Page 94
months, so that you can look at it and determine your lost trend rates. It's available for us to us, all actuaries to look at and review, and that's what we do. We're provided with the data and we do our best to analyze it every six months.
MS. NEWBURY:
Q. Well, perhaps I could ask the question this way, you do your reports every six months and I take it that you will frequently have a change in your trend rate for a particular type of coverage from one six-month period to the next?
MS. ELLIOTT:
A. Well, as I stated earlier, we try as best to be both responsive and stable, you know, strike a balance with that, which is difficult with this commercial data, and one of the things that we do is draw in our prior selection of the lost cost trend rate into our averaging approach, and it's using our prior estimate and our new estimate and averaging them for this selection, and we do that moving forward and that brings a little more stability so that we're not up and down each
review.
MS. NEWBURY:
Q. But when you do these reviews every six months, and if you come up with a different trend rate for a particular type of coverage, is that because there is now a change in the pattern or a change in the trend as of that new six-month period of time?
MS. ELLIOTT:
A. Well, the pattern is what we're trying to measure, what are the changes, and that lost cost trend rate is the terminology used for that changing pattern that we're trying to measure. We have new data. The Board asks us to look at that data every six months and do our analysis. The data, sometimes you could get the same number, you could get a higher number or lower number because you're looking at new data that's available, new estimates of what losses are compared to private estimates, so.
MS. NEWBURY:
Q. Okay, but are you able to say that, look, this is a new trend, six months later, or I have better estimated or I can fine-tune a trend
that I was previously working on six months before? Because it sounds like to me, when you're talking about changing trends and responding to that, that you're having trend rates that change frequently over a period of five years or ten years, and I'm trying to understand if that's what you're saying or whether it's a fine-tuning of a trend rate.
MS. ELLIOTT:
A. No. We truly are trying to present a balanced approach to being responsive to the new data that's available, looking at it, and looking at what our prior selection was so that we have a stable loss trend rate that we present in our report that ensures--can review and comment upon. The new datas available--I don't have a pre-conceived idea that when I get the new data, it's going to change everything dramatically. It's just the new data, I'm going to look at it and assess it and prepare a report and provide it for comment.
MS. NEWBURY:
Q. Okay, and because you identify a different trend rate in December of 2011, for example,
compared to June of 2011, it doesn't mean that the trend has changed in that period of time? That you were going in one direction, now you're going in a completely different direction?
MS. ELLIOTT:
A. No, and I wouldn't say that we're going in a completely different direction. As I've stated we try to take a very stable approach by looking at our prior selection and incorporating that in. That's one of the things that we think is important with this limited commercial data that we're working with.
MS. NEWBURY:
Q. Are you familiar with the terms "noise" and "signal" as used in statistics?
MS. ELLIOTT:
A. Yes.

MS. NEWBURY:
Q. And how would you describe those terms?

MS. ELLIOTT:
A. Well, I think we can bring up an example of noise, we referred to it earlier today, and it was the exhibit with the yellow highlights.

We had a red arrow on it.
MS. GLYNN:
Q. Can you identify that document, please, for the record?
MS. ELLIOTT:
A. It's from the FA Filing, Part 2, 121. So when we look at the average claim size we're trying to measure how does the--what is the change in the average cost of a claim from period to period by looking at the severity data, and if all the claims were fender benders and everyone was very similar, it would be pretty easy. Those costs would be similar. They might be $\$ 2,500, \$ 3,000, \$ 3,100$--they'd be close, it'd be easy to measure what that change in cost is over time. With this data here, we see a lot of ups and downs; we went through that this morning. So this could be referred to as a little bit of noise in the data. We're not measuring the same thing when we look at the change from period to period. We're not measuring just what is the actual increase in the costs. In that data, is a change of the mix of small claims and big claims that are going on from year to year,

Page 98
and I don't know what that mix is, but to me, the changes are so significant that it makes intuitive sense. You only have a hundred-and-twenty-odd claims, some years you're going to have some big claims, and it's affecting the average claim size. So the noise in this case here is the fact that you have a mix of big claims and small claims changing, and we're not trying to measure the change in the mix of claims, whether there was a big death accident or a paraplegic one year and not the next. We're not trying to measure that. We're trying to measure what's the change in the cost to settle a claim. If you had a whiplash this year and a whiplash next year, how much more does it cost you today versus five years from now, that's what we're trying to measure. So this data, because there's a changing mix, is what we call noise in the data.
MS. NEWBURY:
Q. And what about signal?

MS. ELLIOTT:
A. The signal in the data?

MS. NEWBURY:
Q. Yeah.

## MS. ELLIOTT:

A. We don't measure it directly here, but there's an indication that the data, the fits will be poor with this data. We're not getting a good fit with this data.
MS. NEWBURY:
Q. And if you're doing a five-year analysis, how would you determine that what you're measuring is actually signal and not noise in the data? You've indicated that you tend, especially with these smaller sample sizes, you tend to get different mixes, and that's not unusual, you expect that.
MS. ELLIOTT:
A. Um-hm.
Q. You're going to get maybe one year a lot of minor claims, the next year maybe a lot of major claims, another year smaller number of claims but quite significant. So you expect that, and how would you deal with that in looking at a five-year analysis, to make sure that what you're looking at is not the noise instead of the actual signal.
MS. ELLIOTT:

| Page 101 | Page 103 |
| :---: | :---: |
| A. Right. I think in all this data, whether | refer you back to that sentence--and perhaps |
| we're looking at 5 years, 10 years, 15 years | I've misunderstood what you're explaining |
| or 20 years of data, there is a lot of noise | e. "While the five-year period is |
| in this data, the fits are poor. FA stated in | generally more responsive to changing |
| its review that it struggled with its fits | patterns, due to the small number of claims |
| over the 20-year period, it's P-Tests and T- | continuing volatility, we do not fid the |
| Tests were poor, they did not meet their | five-year results sufficiently stable and |
| ndards. FA last year in its filing | therefore give consideration to the ten-year |
| ected the severity trend rate, it said it |  |
| 10 couldn't figure it out. So it's very | 10 MS . ELL |
| 11 difficult with this data to differentiate what | 11 A. Um-hm. |
| 12 is the noise, what are we trying to measure, | 12 MS . NEW |
| 13 are we really measuring the intent here, is | 13 Q. So what changing patterns, if any, have you |
| 14 that cost-the change in cost for the severity | 14 identified in this particular analysis? |
| 15 from period to period, there's a lot of noise | 15 MS . ELLIO |
| 16 here | 16 A. Well, in terms of changing patterns, I guess |
| 17 MS. NEWBURY | 17 I'm going to vie you an example of what that |
| 18 Q. And again referring to the changes in pattern | 18 could be in a five-year period. Say in |
| 19 in the five-year period of time, did you | 19 Ontario--and I apologize for going back to |
| 20 confirm a point in time in the two five-year | 20 Ontario but it's got a big database and you |
| 21 periods that you looked at for this | 21 know, but in Ontario there's been a lot of |
| 22 particular--your report--did you confirm the | 22 issues with fraud, and so we can look at, say, |
| 23 point or points in time, if indeed there are | 23 some coverage thing like, again, collision, |
| 24 more than one, when the change in pattern | 24 it's a simpler coverage to estimate, and if |
| 25 occurred? | 25 there is more fraud--they have issues with the |
| Page 102 | Page 104 |
| 1 MS. ELLIOTT | tow trucks, with the repair trucks, so if |
| 2 A. Sorry. I don't understand your | something is happening in the last five years |
| 3 MS. NEWBURY: | and we see the claims costs are increasing, |
| 4 Q. So you've indicated that the five-year perio | there's a changing pattern because there's an |
| 5 responds to a change in pattern, and have you | areness and there's more fraud. The tow |
| 6 | truck drivers are, you know, just on the |
| 7 | highway waiting for you. So we try to look at |
| 8 A. No. I'm sorry, I haven't indicated that the | that, is there something going on in that more |
| 9 five-year period responded to a change in | recent data that we need to be responsive to? |
| 10 pattern. That - | 10 That would be a typical thing that we want to |
| MS | 11 make sure we're picking up in the data. In |
| 12 Q. Well, to changing patterns | 12 this case here, it's very difficult to pick up |
| 13 MS. ELLIOTT: | 13 a change in what's going on in the more recent |
| 14 A. No, no. No, I said that we've measured the | 14 five years versus ten years, but we look at |
| 15 trend rate over a five-year period, which is a | 15 it. We calculate it and present it to see |
| 16 measurement of how costs are changing. That's | 16 what the data tells us. |
| 17 what we're trying to measure, and we've | 17 MS. NEW |
| 18 measured it over ten years, that's what we've | 18 Q. Okay. So earlier when I was asking, just |
| 19 done. I have not stated that there's | 19 trying to understand the terminology "changing |
| 20 changing pattern. What I have stated is here | 20 patterns," I had understood that you, you |
| 21 is the trend rate over five years and here is | 21 know, confirmed that, yes, indeed, that is |
| 22 the trend rate over ten years. | 22 referring to changes in the trends, but am I |
| MS. NEWBURY: | 23 correct that you haven't actually identified |
| 24 Q. Okay. Well, let's go back to CaOwoo1, Page 4 | 24 any changes in the trends over either the |
| 25 again, the second paragraph, and I'm going to | 25 five- or ten-year period of time? |

MS. ELLIOTT:
A. Right. I think you're incorrect. What I said was that we're measuring the trend rate over a five-year period to see what the number tells us, and we're measuring it over a ten-year period to see what the number tells us.
MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:
A. The five years is a subset of the ten years, and we want to see what the calculation is. That's what we're doing. We're not saying oh, and I believe there is a different direction in the trend rate at five years, that it was going this way at ten years and at five years--the last five--we're not saying that. We're just saying what is that trend rate, what is-that pattern that we're trying to measure is the trend rate, the changing costs, what is it over five years and what is it over ten years, period.
MS. NEWBURY:
Q. Okay. So again, you were explaining why you were choosing the five years and the ten years, and I take it that your evidence is

Page 106
that the five-year period is generally more responsive to changing patterns or changing trends, which is why you include that.
MS. ELLIOTT:
A. For some coverages, yes. It will be, yes. MS. NEWBURY:
Q. Right, and but you haven't actually looked for or identified, in either the five-year period of time or the broader ten-year period of time, any actual changes in the trend?

```
MS. ELLIOTT:
```

A. When we look at the data, we do try to identify if there's a change in the direction, is something going on with that trend rate that before the frequency, the number of claims was going up, the number of claims that you had for all the cars that you insured was the pattern going up, and then it decreased. We're definitely looking to see if that occurs, yes, we are.
MS. NEWBURY:
Q. And you looked for that in this case?

MS. ELLIOTT:
A. We look for that in every review that we do. We look for that, yes.

MS. NEWBURY:
Q. Okay, and you didn't find any changes in the trend, in the five- or ten-year period, for these coverages?
MS. ELLIOTT:
A. That's correct. We're not presenting our report, that we believe that there's a change in direction at the five-year mark and that's why we presented it. That's not what we're saying. We're not identifying that there's a change in direction if we had 25 years of data because we're looking at measuring what is the trend rate over ten years. That doesn't imply that we think there's a change in direction in that ten-year period than the prior period. We're just saying what happened in those last ten years, let's measure the trend rate over that period. And let's look at the latest five years. What is the trend rate that we can measure there, what happened there? By doing so, we're not implying that we think there's a change in the direction of the trend rate. We're simply trying to measure what it is in that time period.
MS. NEWBURY:
Page 108
Q. Okay. Now you could have a change in the trend rate that's not necessarily a change in direction, is that not correct?

## MS. ELLIOTT:

A. Well, that's why we look at the trend rates, we do the reports every six years to--sorry, every six months to find out what is the data showing us this time, yeah.
MS. NEWBURY:
Q. Okay, but in this case here, if you haven't identified any changes in the patterns or changes in the trends over the ten-year period of time, they why would you--what's the benefit, then, of looking at the five-year period?
MS. ELLIOTT:
A. Sorry. I don't understand your question, I MS. NEWBURY:
Q. So you've indicated that changing patterns is basically changes in the trends?
MS. ELLIOTT:
A. What we're trying to measure is--we have the data, we have the loss cost, and we see that experience, say, for the last ten years of data and we look at each of those data points
and we're trying to measure what is that pattern. On average, what is the percentage change in that lost cost over the period of time that we're looking at. That's the pattern that we're trying to measure.
MS. NEWBURY:
Q. Okay, and so your evidence is that in the most recent five years, you would expect that it would be more responsive to any change in the pattern over that five-year period of time?
MS. ELLIOTT:
A. What we're trying to say with those words is that yes, any more recent data, if something was happening--I gave the example of tow trucks, a problem in Ontario with fraud, that the more recent data, that something new that's occurring, the more recent data would help you see that if you look at that fiveyear period, yeah.
MS. NEWBURY:
Q. Okay, but you haven't actually identified any such change of pattern here?
MS. ELLIOTT:
A. That was an example. No, that's right. We haven't identified -

Page 110
MS. NEWBURY:
Q. Or any other change of pattern?

MS. ELLIOTT:
A. Well, when we present the loss trend rates, the values that are provided are the values, and if those values are different between tenyear, five-year or whatever period, that's telling you something, yeah.
MS. NEWBURY:
Q. Okay. So there has been a change in trend and--if there's been a change in your rate? MS. ELLIOTT:
A. Well, the numeric value changes, yes. With each review that we do, typically it changes. There's new data available, new estimates. If it never changed, then I assume the Board would say, well, you've done it once and the data doesn't change, so don't look at it again. So new data comes in, the Board asks us to look at it, and so we do.
MS. NEWBURY:
Q. And just one more question on that before I leave that. Is it possible that the--you know, looking at it every six months and updating your trend rate is actually, you

$$
\begin{aligned}
& \text { know, taking advantage of the fact that you } \\
& \text { now have more data and perhaps you can fine- } \\
& \text { tune your trend rate six months on, as opposed } \\
& \text { to saying, oh, it's now changed, we were going } \\
& \text { up until June, now we're going down, or we } \\
& \text { were stable before and now we're increasing or } \\
& \text { decreasing? } \\
& \text { MS. ELLIOTT: } \\
& \text { A. Yeah. Well, we try to take into consideration } \\
& \text { the fact that--we look at what we selected in } \\
& \text { our prior report, we look at what the ten-year } \\
& \text { trends and the five-year trends are telling } \\
& \text { us, what those numbers are, and then we try to } \\
& \text { take--you know, we're striking a balance here } \\
& \text { between being responsive to the new } \\
& \text { measurements that we've calculated, and to } \\
& \text { what we presented in the prior report, and we } \\
& \text { take an average. I am the very first person } \\
& \text { to say that this data is very difficult and } \\
& \text { challenging to work with, and that's, you } \\
& \text { know, a step that we try and follow here so } \\
& \text { that we have something that we believe is } \\
& \text { stable from report to report. } \\
& \text { MS. NEWBURY: } \\
& \text { Q. What factors might be considered to cause } \\
& \hline
\end{aligned}
$$

frequency or severity or lost costs to change over time, other than the passage of time itself? And you've mentioned some examples of fraud, for example, in another province.
MS. ELLIOTT:
A. Sure. Yeah, frequency--and one of the interesting things is we're seeing in many provinces across the land is that--and even in the US as well, we're seeing a decline in frequency and a lot is attributed to that--to technology with cars, whether you're starting with ABS brakes, now cars have little signals on the windows--I like those because I know that they'll see me if I'm passing them. So there's more changes in cars that are happening that are driving a reduction in the frequency, so--and I'd say that's more of a phenomena in the last sort of ten years or so, that we're seeing that, yeah.
MS. NEWBURY:
Q. Okay. So you're not surprised, then, that frequency is negative?
MS. ELLIOTT:
A. Negative? No.

MS. NEWBURY:
Q. And in terms of factors that might cause there 1 to be changes in frequency and severity and lost cost as well over time, how do you take these factors into consideration in your analysis?
MS. ELLIOTT:
A. Could you be more specific? I'm not sure what you're asking me.
MS. NEWBURY:
Q. So you've acknowledged and given examples of factors that might cause frequency, severity or lost costs to change over time, and I'm just--other than simply the passage of time, so how do you take these factors into account in doing your analysis?
MS. ELLIOTT:
A. Well, hopefully my answer will get at what you're asking me here. We look at--in our model, we can incorporate many parameters to try to measure these external forces. So we're able to include a parameter, or exclude, depending on what the stats tell us, whether it's for the reforms that happened in this province, we can incorporate the unemployment rate, we can incorporate the Consumer Price

Page 114
Index, we can incorporate precipitation--there are many things that we can incorporate into our model to see is that telling us something, does that help us get a better fit? So we look at that external information, which is a measurement of--to help with the model. You know, there is a key example in this province, and it was during the timeframe when there as a hearing. We had a very severe winter when I was here in Newfoundland and you could see that in the claims experience, the frequency rate was really high in the early 2000s.
MS. NEWBURY:
Q. And do you only look for any impact of such an event if you're aware of it, or do you look at the statistics, the numbers, the data, and then try to see what might explain, you know, a change in frequency or a change in severity? How do you go about doing that?
MS. ELLIOTT:
A. Yeah. Well, that's an interesting point, and I can speak, because it's public knowledge. We're doing a review in $B C$ and in that filing--and BC is government-run auto, and in that filing, there's an adjustment to the most

Page 115
recent data in their trend model because of precipitation, and in that case, the precipitation was so low, it was unusually low, that they thought--because Vancouver, they get a lot of rain, that that was causing a distortion in their trend model, so--and this is the--we're reviewing this file. They had modified their data for that. So one of the things you do is you look at the data and you say, gee, it's changing, and then you say, why is it changing? And in that case, the experience was to go and look at the precipitation and say, oh, there was a dramatic change in the participation and that--there's a link with the frequency rate. So it's looking at the data and then trying to research to find out why did that occur. It's picking up the phone to Bob Byrne and saying can you tell me if, you know, such and such-did anything go on? They're the things that we do, yeah.
MS. NEWBURY:
Q. Okay. So basically, you see something in the data that raises a question, I wonder if something happened at this point in time, and
then you start to look and make inquiries and see if there's any changes in weather or changes in legislation that could have perhaps prompted that change?
MS. ELLIOTT:
A. Right, and so often that will be the new experience, or the more recent experience comes through. We'll investigate and then you've got a note in your file. As you go forward over time, you kind of go, oh, yeah, I remember back then there was that bad snow storm and that explains that high point, yeah.
MS. NEWBURY:
Q. Okay, and what happens if you know something has occurred, like product reform, within the timeframe of your analysis, would you look to see whether there's any impact from that or is it all -
MS. ELLIOTT:
A. Oh, absolutely. I think I just said that. We have in our model the flexibility to include or exclude that, depending upon whether it's significant or not, so we definitely do that.
MS. NEWBURY:
Q. Sure, and I'm aware that you do have a very
flexible model and you can look at EI and Consumer Price Index and number of things, but I'm wondering when do you actually introduce that? Do you do that automatically for each and every analysis?
MS. ELLIOTT:
A. Yes.

MS. NEWBURY:
Q. You do? Okay. So every analysis that you do, you look at that?
MS. ELLIOTT:
A. Yeah. Our model, we click an X on, click an X off. It's one second, yeah. Absolutely.
MS. NEWBURY:
Q. So you did, in fact, look at product reform in this particular case?
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. And that was for the ten-year period, presumably?
MS. ELLIOTT:
A. Well, we have 15 years of data that we reviewed, and we looked at the reform parameter in our review, yeah.

Page 118
MS. NEWBURY:
Q. Okay, and did you keep the information, the analysis that you had for that?
MS. ELLIOTT:
A. No. It's done in Excel, as we work through it. I don't have it printed up.
MS. NEWBURY:
Q. Okay. So you would have discarded that after?

MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. And again, that was a 15 -year -

MS. ELLIOTT:
A. We used 15 years of data, yeah, so -

MS. NEWBURY:
Q. 15 years of data? Would you look for a 15year trend?
MS. ELLIOTT:
A. Well, that's one of--as I said as the--when we started our discussion here, that we have 15 years of data and we look at the data, 15 years. We look at not just ten years and five years; we look at seven years. Yeah, all different ways. Numerous ways.
MS. NEWBURY:
Q. Okay, but maybe I--so I heard at the beginning of the evidence that you looked at five-year segments, so you'd look at the first five years, the next five years, the more recent five years.
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. But you would have looked at a full 15-year trend?
MS. ELLIOTT:
A. We look at numerous segmentations of the data, yeah.
MS. NEWBURY:
Q. Okay. Including the 15 -year trend, yes.

MS. ELLIOTT:
A. Including 15 year.

MS. NEWBURY:
Q. And I also indicated or questioned you this morning about the outliers, and you couldn't recall, I don't believe, what data points you might have excluded as outliers for a 15 -year trend.
MS. ELLIOTT:
A. Right.

Page 120
MS. NEWBURY:
Q. It's my understanding from your evidence, and reports and documentation that you've produced, that for five years you exclude one point, high and low, and for ten years, you exclude two points, high and low.
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. Do you have a standard approach for excluding data points when you use a 15 -year trend?
MS. ELLIOTT:
A. No, not presenting--we do look at that. So my answer would be no, we don't have a standard approach of what we're excluding. Part of what we--you know, we have the data, that's one of the first things we do is look at the data without any exclusions, and I can't--you know, we run many versions of it and say what would happen if we--you know, what about this point, that point.
MS. NEWBURY:
Q. And when you run those versions, do you do your, you know, regression statistics to see about the fit of the data?

|  | Page 12 |
| :---: | :---: |
| MS. ELLIOTT: |  |
| 2 A. Yes. It's an automatic output. |  |
| 3 MS. NEWBURY: |  |
| 4 Q. And you have no recollection of what you would |  |
| 5 have produced or what your results were for |  |
| 6 |  |
| 7 MS. ELLIOTT: |  |
| 8 A. Not form 2012 now. I do so many, no, I 9 wouldn't - |  |
|  |  |
| 10 MS. NEWBURY: |  |
| 11 | Q. So, you didn't do that in relation to this |
|  | particular report for May 16, 2014 ? |
| 13 MS. ELLIOTT: |  |
| 14 A. No. |  |
| 15 MS. NEWBURY: |  |
| 16 | Q. No, okay. I'm going to request that you |
|  | provide, either look for and provide the 15 |
| 18 | year with the 2011 H 1 --so, I'm just trying to |
| 19 | clarify with my colleague about the 15 year |
| 20 | analysis. So, you've indicated before that |
| 21 | you done a 15 year analysis of a trend, you |
| 22 | can't recall what outliers you may or may not |
|  | have included in that. |
| 24 | MS. ELLIOTT: |
|  | A. I don't recall the outliers and parameters, |

MS. ELLIOTT:
A. Yes. It's an automatic output.
. NEWBURY: have produced or what your results were for the 15 year trend?
MS. ELLIOTT:
A. Not form 2012 now. I do so many, no, I wouldn't-
MS. NEWBURY:
So, you didn't do that in relation to this particular report for May 16, 2014 ?
MS. ELLIOTT:
A. No.

MS. NEWBURY:
No, okay. I'm going to request that you provide, either look for and provide the 15 year with the 2011 H 1 --so, I'm just trying to clarify with my colleague about the 15 year analysis. So, you've indicated before that you done a 15 year analysis of a trend, you can't recall what outliers you may or may not have included in that.
MS. ELLIOTT:
A. I don't recall the outliers and parameters,

Page 122
but I know one of the--we have 15 years of data and it's an easy process for us to run our model.
MS. NEWBURY:
Q. Okay. So, I'm going to request that you do that please (REQUEST).
MS. ELLIOTT:
A. Okay.

MS. NEWBURY:
Q. Thank you.

MS. GLYNN:
Q. Can we clarify the period? We're talking about a 15 year period, but where we start and where we end.
MS. NEWBURY:
Q. Well, let's say, we've been doing the end of 2012, so December 2012 and also June 2012.
MS. ELLIOTT:
A. Yes, okay.

MS. GLYNN:
Q. And 15 years back, okay.

MS. NEWBURY:
Q. And for bodily injury, also if you could do the same exercise for two periods, $1998 \mathrm{H} 1-$ 2004 H1 and 2004 H2 to 2012 H2. (REQUEST).
A. I believe that they are looking at 20 years of data.

## MS. NEWBURY:

Q. Okay. And if you were looking at 20 year period in conducting a trend analysis, would you be able to detect if there is more than one trend present in that data?
MS. ELLIOTT:
A. Would I--do we have the capabilities within our Excel?
MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. Yes, sure.

MS. NEWBURY:
Q. Okay. And I'm trying to distinguish between the talk about the changing patterns this morning where it's just a bit more--you updated from half year to half year, but you haven't actually identified any point in time,
but I'm wondering, you know, more specifically, can you look at 20 years and say here's a trend from this period to that period, it changes and now we're moving on to a different type of a trend. So, you're saying that you do have the capability to do that. Would one such trend be independent of another trend, if you do find two or more trends in a 20 year period or a 15 year period?
MS. ELLIOTT:
A. Would they be independent?

MS. NEWBURY:
Q. That's correct.

MS. ELLIOTT:
A. It's possible that they're independent, sure. MS. NEWBURY:
Q. Okay, but if they're two distinct trends, if you decided that they're going up at a consistent rate for six years and then for the next seven years, they are stable and then the final few years, they go on a downward direction, would the values that you get for period one be in, any way, influenced by the values in period 3 or could you basically look

```
    at the third period and say, well this is
    separate.
MS. ELLIOTT:
    A. Right.
MS. NEWBURY:
    Q. Whatever happened back in 2002 for example is
        not going to influence what my claims costs
        are going to be a year from now?
MS. ELLIOTT:
    A. Sure, and there's different ways to run a
        model. You can run a model over the full 20-
        year period and then layer on top of that a
        different trend rate, so those--one long trend
        rate isn't merged in with the separate trend
        rate.
MS. NEWBURY:
    Q. Yes.
MS. ELLIOTT:
    A. Or you can slice it up into two separates one,
        which I understand is what FA did.
MS. NEWBURY:
    Q. Okay. So they had two separate trend rates,
        and is it your understanding that the second
        trend rate is separate and distinct from the
        first trend rate?
```

MS. ELLIOTT:
A. It's my understanding that they take the trend rate over the period, the eight and a half years, from 2004-2 to 2012-2, and that period is their measured trend rate that's applied to taxi experience, yeah.
MS. NEWBURY:
Q. Okay. So if the capability exists for detecting multiple trends which might occur in a 20-year period of time, why would you be concerned that Mr. Doherty has looked at a 20year period, you know, in looking at the data? It seems like there's been some sort of criticism I guess, or you've got some differences of opinion as to why he would look at 20 years of data?
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. But when in fact he's identified that there is a separate and distinct trend in the last eight and a half years, why would you be concerned that he initially started out by looking at the first twelve and a half years or eleven and half years?

MS. ELLIOTT:
A. Well the--sure. The reason why we're concerned is that they're taking 20 years of data and they're assuming as part of their model for every coverage, collision, AB , property damage, BI , they're assuming that the 2002 reforms affected all of those coverages. And they come up with reforms costs, and AB was a big example with the reforms causing claims to reduce by 73 percent. And so they've said that there's a change that occurred at 2004-2 that there's a new trend rate because of reforms caused this big massive reduction in costs for AB, down 73 percent, and now everything is trending differently at that point. So you have to buy in that the reforms caused AB to drop by percent and then say now the trend rate is different at that point. So if you accept that there's reforms, that there's a change in pattern at that point, that the reforms caused this drop, and now you're just going to look at that eight-and-a-half-year period because you think the trend rate, the direction has changed from the prior periods. Over the 20
years you might see a trend rate going this way for AB , and then it goes that way, starting at 2004-2. That's what the FA model is. So although they are effectively just using that last eight and a half years, it is driven by saying, "Here's a low point from 2004-2, and we think costs decreased by 73 percent for $A B$, and now they're going up." If you buy that, then you can buy that there's a change in direction.
Q. Okay, so I take it from your evidence that your concern with Mr. Doherty and Facility using 20 years of data isn't necessarily the fact that he's used 20 years of data. It's just that you disagree that there's been an impact from the reform in 2004?

## MS. ELLIOTT:

A. And I think what happens with this approach is assuming for all the coverages that there was an impact on the reform. That's what they do. They don't explain in their rate filing why costs for BI would have gone down 73 percent for reforms, and so in doing so, and in accepting what their model prints out for
them, accepting this reform cost, they are now forced to say, "I have this eight-and-a-halfyear period, from 2004-2 to the end of 2012. I have this eight-and-a-half-year period, so now I have to kind of work with it because things have changed." See it kind of, I think, forces them into a little bit of a box that they've now accepted, that the reforms changed things starting in 2004, reduced AB costs by 73 percent, and now we have a new pattern. It--I think it puts them in a little bit of a box and now I have eight and a half years to work with going forward and now I'm going to see what happened to the trend rate over that period. So using the 20 years, assuming that the reforms affected all the coverages, limits them to this eight-and-a-half-year period going forward.
MS. NEWBURY:
Q. Now it was actually Mr. Doherty's evidence that he didn't assume that there was an impact. In fact, he was looking at the data and tested four possibilities that that happens. And I understand that you look at these type of things as well, you

MS. NEWBURY:
Q. So it wasn't that he's trying to force MS. ELLIOTT:
A. No.

MS. NEWBURY:
Q. - a reform into the data.

MS. ELLIOTT:
A. Yeah.

MS. NEWBURY:
Q. It's just that data suggested it and the statistics confirmed that from his analysis, but in terms of your comment that he's chosen a box, it's an eight-and-a-half-year box, and how he had to force everything to fit that, how is that any different than selecting a predetermined length of time such as ten years? Would that not suffer from being considered forced into a box and not seeing what happened in a longer period of time? What's magical about the ten years? MS. ELLIOTT:
A. Well, our difference is that we do look at the ten years ending December 2012. We look at it ending June 2012. We look at the five years under two alternatives. So we look at
automatically look at EI and CPI, so the fact that he looked at the 2004 reform as a potential for a change in the trend isn't any different than what you do, is that correct?
MS. ELLIOTT:
A. Yes.

MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. You can put a parameter in your model to measure for that, yes.
MS. NEWBURY:
Q. Now he actually says in his evidence that was the statistics that made him conclude that something changed then. He wasn't even necessarily sure that it was the reform, but there were changes and it was actually the numbers and the regression statistics that confirmed indeed -
MS. ELLIOTT:
A. Yeah.

MS. NEWBURY:
Q. - that there was a change there.

MS. ELLIOTT:
A. Sure.

| Page 133 | Page 135 |
| :---: | :---: |
| 1 MS. ELLIOTT: | 1 yourself to looking at the ten-year period of |
| 2 A. Um-hm. | 2 time |
| 3 MS. NEWBURY: | 3 MS . ELLIOTT: |
| 4 Q. So that, in your view, that takes care of the- | 4 A. Um-hm? |
| -having a predetermined length of time? | 5 MS. NEWBURY: |
| 6 MS. ELLIOTT: | 6 Q. - if you happen to have a different trend that |
| 7 A. What we're trying to do is find a balance | 7 ended for example in the first couple of years |
| 8 between being responsive and stable. So yes, | 8 of that ten-year period of time, don't you run |
| 9 we take the various averages over the ten-year | 9 the risk that you are going to be missing that |
| 10 periods and the five-year periods, and make | 10 previous trend? |
| 11 your selection, and draw in what we selected | 11 MS . ELLIOTT: |
| 12 the prior period. And that we believe gives | 12 A. Well, we would see it when we look at the--if |
| 13 us a responsive and stable approach to the | 13 I'm understanding what you're saying, in the |
| 14 loss trend selection. I'm not an advocate of | 14 more recent period, if we look at the five- |
| 15 doing one run with this data, looking at what | 15 year trend, we would see that. |
| 16 the number is. The R square, you know, it-- | 16 MS. NEWBURY: |
| 17 we're not looking at R squares that are up in | 17 Q. And how would you see that? |
| 18 the nineties and it's a great fit. FA has | 18 MS. ELLIO |
| 19 presented their one run, and that's their | 19 A. Because we calculate it. |
| 20 selection, and I maintain that you can exclude | 20 MS. NEWBURY: |
| 21 different points, different time periods, and | 21 Q. So you can see that if you've got Year 1 and |
| 22 get very different numbers because the data is | 22 Year 2 which is the tail end of a trend from |
| 23 volatile. And if you just pick one number and | 23 the ten-year period before that, or five-year |
| 24 say, "That's it, that's right. I've got the | 24 period before that - |
| 25 bet fit," you may not have the right answer. | 25 MS. ELLIOTT: |
| Page 134 | Page 136 |
| This data is very volatile. I'm really saying | 1 A. Sorry, what's Year 1 and Year--what years are |
| it very uncertain. | 2 you referring to? |
| 3 MS. NEWBURY: | 3 MS. NEWBURY: |
| 4 Q. So if you restrict yourself to the ten-year | 4 Q. These are just examples. |
| 5 period, are you not running a risk that you-- | 5 MS . ELLIOTT: |
| 6 the first few years of that period of time | 6 A. Sure. |
| 7 might actually contain a separate and distinct | 7 MS. NEWBURY: |
| 8 trend, and you're only catching the tail end | 8 Q. This is a hypothetical question. So if you |
| 9 of that in your ten-year analysis? Do you | are looking at a ten-year period of time, and |
| 10 take that into account in your approach? | 10 you've got the first two years which - |
| 11 MS. ELLIOTT: | 11 MS. ELLIOTT: |
| 12 A. Well, we're looking at ten years of data and | 12 A. Okay, well which are the first two years? The |
| 13 measuring the change over that ten-year | 13 older years or the more - |
| 14 period. | 14 MS. NEWBURY: |
| 15 MS. NEWBURY: | 15 Q. The older years. |
| 16 Q. Yes. | 16 MS. ELLIOTT: |
| 17 MS. ELLIOTT: | 17 A. Okay. |
| 18 A. We're--and then we're also looking at the more | 18 MS. NEWBURY: |
| 19 recent five years and measuring the change in | 19 Q. Yes. So the older--the oldest of the two |
| 20 that period of time. So--and we're also | 20 years |
| 21 seeing pretty different results for that. So | 21 MS. ELLIOTT: |
| 22 I think our approach is, you know, what we | 22 A. Um-hm. |
| 23 think is a reasonable approach. | 23 MS. NEWBURY: |
| 24 MS. NEWBURY: | 24 Q. Year 1 and Year 2 out of ten years happen to |
| 25 Q. But my question is that if you restrict | 25 be the tail end of a trend from the--a |

previous period of time.
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. How would looking at the most recent five years detect that previous trend?
MS. ELLIOTT:
A. Well if you're not including that in the fiveyear model, you're not going to see that.
MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. But if you look at the full ten years, and you look at your fitted values and your actual values, and compared that, you're going to see any differences there. Yeah, and it might force you to, you know, look at that and maybe you're going to decide that you're not going to use those more recent--the first year and the second year -
MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. - because it's not giving you a good fit.

MS. NEWBURY:
Page 138
Q. Right.

MS. ELLIOTT:
A. The direction is changing. Certainly you look at the data.
MS. NEWBURY:
Q. But you're not looking to see whether or not there's actually more than one trend going on and I'm restricting myself to ten years?
MS. ELLIOTT:
A. We absolutely look at the data to see what's going on with the data. We absolutely do.
MS. NEWBURY:
Q. Okay, beyond the ten years?

MS. ELLIOTT:
A. We look at the data.

MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. The 15 years, to see what is going on with the data.
MS. NEWBURY:
Q. Okay, but not 20 years?

MS. ELLIOTT:
A. No, not 20 years.

MS. NEWBURY:
1
Q. Is it possible that the Facility Association charts which showed the full 20 years of data as opposed to 15 years of data would allow the additional data to reveal a separate trend that started in the, say, the most--the earliest of the five years of that 20-year period of time?
MS. ELLIOTT:
A. So you're asking me if a trend occurred in 1993 to 1998 in there, if it identified something different going on?
MS. NEWBURY:
Q. Well it could be a trend that starts in '96MS. ELLIOTT:
A. Sure.

MS. NEWBURY:
Q. - and ends in 2002 or -

MS. ELLIOTT:
A. In fact, in think there was. I think the frequency, it was going up then.
MS. NEWBURY:
Q. Yes.

MS. ELLIOTT:
A. And then around 2000 it started declining. MS. NEWBURY:

Page 140
Q. Yes.

MS. ELLIOTT:
A. So--but I already know that because I looked at that data before. So yeah, but what am I going to do with it in 2015?

## MS. NEWBURY:

Q. Okay. So you don't feel that there's any advantage looking at an additional five years of data, at the, you know, the earliest 15 to 20 years ago for example.
MS. ELLIOTT:
A. I don't think looking at 1993 to 1997 in 2015 is going to help in any way. And I have looked at that data over time. Now let's not--you know, as I said, we've been doing this, looking at trend rates over a period of time. I have some, vague as it may be, recollection of data from back then.
MS. NEWBURY:
Q. Okay, and is there a harm in looking at the full 20 years of data?
MS. ELLIOTT:
A. No harm. No harm in looking at it, no.

MS. NEWBURY:
Q. Now it's your evidence, and you just alluded
to it again, that there has been a change in frequency. I think you've indicated since 2002? Is it 2002 that you -
MS. ELLIOTT:
A. Earlier I think there was an increasing pattern and then it started to decline.
MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:
A. Yeah.

MS. NEWBURY:
Q. And that has increased? That is continuing to this day, the change in frequency?
MS. ELLIOTT:
A. I believe that the frequency is a decline, yeah.
MS. NEWBURY:
Q. Okay. And that's over quite a long period of time then in that case? So you can have a trend that goes for more than ten years?
MS. ELLIOTT:
A. Yes, we're--and I said that we're seeing this decline in the frequency rate in many provinces.
MS. NEWBURY:
Page 142
Q. Yes.

MS. ELLIOTT:
A. And we attribute that more so in the last ten years to advances in technology with vehicles.
MS. NEWBURY:
Q. And given that you do recognize that there is a trend in frequency in and of itself which would be not necessarily the same as the trend in loss costs or severity, would that mean that it should be important or beneficial to look at these trend rates separately?
MS. ELLIOTT:
A. Absolutely, and we do that, yeah.

MS. NEWBURY:
Q. Okay. Now in the trend rates that you've provided, there are actually--it's one trend rate for severity and frequency combined into loss costs?
MS. ELLIOTT:
A. Right, because when the--in the application of the trend rate it is one number. In the exhibit prepared by FA they take their taxi experience and they apply the loss trend factor. It's one number that's presented for the loss costs, yeah.

MS. NEWBURY:
Q. Okay. You referred to the CA 0 W 001 , page 1 of that report. You state in that report that, "We modelled the data several different ways in an attempt to identify the underlying trends during the experience period with and without certain data points that are considered to be statistical outliers, and over time periods that are longer than the experience period."

## MS. ELLIOTT:

A. Sorry, is this on the screen or -

MS. NEWBURY:
Q. Perhaps we can scroll down a little bit to see where that is. It's the third paragraph. I don't believe that's the one. Oh, it's page 4 , is it? Sorry. I've got the wrong page over there. Just bear with me for a minute.
MS. GLYNN:
Q. I think we have it there on the screen now, Jennifer.
MS. NEWBURY:
Q. Oh, is there?

MS. GLYNN:
Q. Yes.
Q. Yes, sorry, it's the fourth paragraph, at the very end. Okay? So, "We modelled the data several different ways in an attempt to identify the underlying trends during the experience period with and without certain data points that are considered to be statistical outliers, and over time periods that are longer than the experience period as a means of increasing the stability reliability of the data being analyzed." Now there's several different ways that you refer to modelling the data. Can you explain what that means?
MS. ELLIOTT:
A. What we're trying to express here is that we look at measuring the trend rate. You know, perhaps modelling is a bit of a confusing word, but measuring the trend rate over several different time periods with different exclusions and that's what we're trying to express there.
MS. NEWBURY:
Q. Okay. So basically it's the--you have some specifics in your report about the time

```
periods and the data exclusions, but you're saying that you did much more than that?
```

```
MS. ELLIOTT:
```

MS. ELLIOTT:
A. Yes.
MS. NEWBURY:
Q. But you haven't produced the reports and
haven't necessarily kept all of that
information? You're just saying that you have
done a bunch of other models?
MS. ELLIOTT:
A. Right, we showed earlier a 2012 exhibit where
there was a summary of some of the runs that
we prepare -
MS. NEWBURY:
Q. Yes,okay.
MS. ELLIOTT:
A. - that are broader than what's presented in
the summary, in the discussion section for
each coverage.
MS. NEWBURY:
Q. Okay.
MS. ELLIOTT:
A. Yeah.
MS. NEWBURY:
Q. And would that be comprehensive? Would that

```
                                    Page 146
    include everything that you did?
MS. ELLIOTT:
    A. No.
MS. NEWBURY:
    Q. And how do you measure the various models in
        terms of their ability to identify underlying
        trends during the experience period?
    MS. ELLIOTT:
    A. Well we have a number. There's standard stats
        that are produced, and we're looking at a
        measure called an R square, we're looking at,
        and a T statistic. They would be the two
        common ones that we look at to determine
        whether the parameters are significant in the
        model.
    MS. NEWBURY:
    Q. And how would you describe the T statistic to
        lay people like most of us?
MS. ELLIOTT:
    A. Sure. Well there's a set value, and we're
        really looking at what is the value of the T
        statistic. Typically we want to see a number
        of two or higher to indicate that that
        parameter is significant, that's it's adding
        to the model. And certainly with this data
include everything that you did?
MS. ELLIOTT:
A. No.

MS. NEWBURY:
Q. And how do you measure the various models in terms of their ability to identify underlying trends during the experience period?
MS. ELLIOTT:
A. Well we have a number. There's standard stats that are produced, and we're looking at a measure called an R square, we're looking at, and a T statistic. They would be the two common ones that we look at to determine whether the parameters are significant in the model.
MS. NEWBURY:
Q. And how would you describe the T statistic to lay people like most of us?
MS. ELLIOTT:
A. Sure. Well there's a set value, and we're really looking at what is the value of the T statistic. Typically we want to see a number of two or higher to indicate that that parameter is significant, that's it's adding to the model. And certainly with this data
because it's so limited and volatile, we do not get as good fits, our R squares are not what we'd like them to be.
MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:
A. And it's a difficult data to fit.

MS. NEWBURY:
Q. Okay. So, you do use this T statistic in your own trend analysis or analyses?
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. And how is that related to the P value which Mr. Doherty has referred to from time to time in his evidence and in some of his documentation?
MS. ELLIOTT:
A. They're actually similar measures, if you have a low P value, you'll tend to have a high T statistic measure.
MS. NEWBURY:
Q. And is there a way of describing, like you know, what does P value mean? Is it -
MS. ELLIOTT:

Page 148
A. Well, \(P\) value and \(T\) value are both trying to indicate whether they parameter that you're using adds to the--so, say if you incorporated precipitation into your model and if your T value was 3.5 and your P value was .0001 , you'd think yeah, okay, that's pretty good. I really should include precipitation in my model. So, there are different values that you're looking for for P test and a T test, but both are trying to indicate that the parameter is adding to your fit. It's a good parameter to use.
MS. NEWBURY:
Q. But does it have any sort of meaning, you know, it's--you often hear about stats, something is correct 99 times out of a hundred or -
MS. ELLIOTT:
A. Sure, and I don't have the T test book. I mean, there's a whole page of numbers, but yes, there's a book and there's a value that's printed that you're looking at, yeah.
MS. NEWBURY:
Q. Is there one term that would he more helpful in describing it to lay people? Is the T
```

statistic more useful when dealing with other,
you know, technical people and the P value more helpful when dealing with lay people in terms of its -
MS. ELLIOTT:
A. I don't know, we have fairly highly educated people in the room, but I use T statistic to look at whether that value that we are including in the trend model adds to the fit, if it's significant.
MS. NEWBURY:
Q. And how would you choose to rely upon one description over the other? Why would you choose to refer to T statistic as opposed to P value?
MS. ELLIOTT:
A. You could have both, I mean, if not objection to having both. You could have one, I mean, you could, it's just a value that if you will, comes out from an excel model.
MS. NEWBURY:
Q. Okay. And what is the term outlier, as it's used in statistics?
MS. ELLIOTT:
A. Well, there'd be a common term, often for an

```

Page 150
outlier in statistical terms you're looking at the actual data and then you're looking at the fitted data and then the difference between those two pieces of data.
MS. NEWBURY:
Q. Um-hm. Can you get into a bit more detail about specifically what an outlier is? Is it different than--how different?

MS. ELLIOTT:
A. Well, that really is the issue is how different is it? What is that difference? So, if you take all your data and you run, try to fit a line to it and maybe you have a really good fit, but you've got one piece of data that it's different from the actual experience is really why maybe it's much higher or much lower, whatever the case may be, you could consider that an outlier.
MS. NEWBURY:
Q. Okay. So, is it sort of like an anomaly in the data? It's different from most of the data that, you know, either it's a lot higher or a lot lower -

MS. ELLIOTT:
A. Right, there could be something that caused
that particular data point to be different. And we spoke earlier about and example in Vancouver where they found the precipitation was causing a difference. So, yes, you have a particular data point that you think is out of keeping with everything else and if you include that data point in your trend model, then perhaps you won't get the best calculation or the best measurement that you're intending to measure.
MS. NEWBURY:
Q. So, basically it's a data point that's out of keeping with everything else and there might be an explanation for it, it might not be necessarily an error in the data, there could be a very good explanation for it, like -
MS. ELLIOTT:
A. And sometimes you don't necessarily know what the reason is. You just know that it's really different then everything else.
MS. NEWBURY:
Q. And it may or may not be explainable.

MS. ELLIOTT:
A. Unfortunately, that's true.

MS. NEWBURY:
Page 152
Q. And you noted that when you do your different ways of modelling the data that you will do it with and without certain data points that are considered to be statistical outliers. And I'm wondering how would you determine if a data point is, in fact, an outlier?
MS. ELLIOTT:
A. Well, in our approach and in what I'm expressed earlier today, what we do is that we take the two highest and two lowest points, we feel that that helps reduce the, exclude the points that are high and low out of the model in our measurement and that's the approach that we've taken and we do that from review to review.
MS. NEWBURY:
Q. Okay. And is it the consistent number of data points that you would exclude? Do you exclude, in some reviews, one data point for a ten year period of time and maybe the next time, four data points for a ten year period of time?
MS. ELLIOTT:
A. Well, I think that we typically, when we're looking at ten year, exclude two high and two
low and five years, one high and one low.
MS. NEWBURY:
Q. Okay. And for a 15 year you don't have a typical exclusion.
MS. ELLIOTT:
A. We have a presented trend rates for 15 years in our report. So, as I said earlier, I don't have a number for you.
MS. NEWBURY:
Q. Okay. And do you do any testing to perform, if in fact, the data points, the two high, the two low in a ten year period, for example, are in fact outliers?
```

MS. ELLIOTT:

```
A. Well, we are looking at the data without any exclusions. The actual data and how does that fit in looking at the differences, yes.
MS. NEWBURY:
Q. Okay, but do you do any specific tests, not just comparing how does it look with no exclusions and how does it look with four exclusions, two high and two low?
MS. ELLIOTT:
A. We're looking at the actual data and the fitted data. You can see graphically and with
this commercial data, a layman can see some of the outliers, I mean, they're fairly extreme because the data is so limited. But yes, as I said, we're excluding the two high and the two low.
MS. NEWBURY:
Q. Okay.

MS. ELLIOTT:
A. We look at the actual data and the fitted data, with no exclusions and see those differences. We look at the graphs of the data and see these high points. That's what we do.
MS. NEWBURY:
Q. Okay. Are there any names on any of the tests that you perform?
MS. ELLIOTT:
A. No.

MS. NEWBURY:
Q. Are there standard tests to confirm whether a data point is, in fact, an outlier?
MS. ELLIOTT:
A. Yes.

MS. NEWBURY:
Q. And what are those standard tests?

MS. ELLIOTT:
A. There's tests where you can, you're looking at the difference and what the difference is for each of the data points, where you're measuring those differences, there'll be a bell curve of the differences and you're trying to see how far within that bell curve those differences lie, yes.
MS. NEWBURY:
Q. Okay. And you haven't done of any of this sort of testing?
MS. ELLIOTT:
A. Not in this example, no.

MS. NEWBURY:
Q. Okay. And why not?

MS. ELLIOTT:
A. Because we've taken the approach that we're going to exclude the two highest and the two lowest, the data is very volatile and that's why, because it's so obvious to a lay person when you have a point up here and a point down there that they're high and low.
MS. NEWBURY:
Q. Okay. Now, you said that a lay person would be able to see some of the outliers. Would
you expect an outlier to be obvious or noticeable all the time? Would each and every outlier seem obvious to the lay person?
MS. ELLIOTT:
A. Well, I guess if you're looking at the--no, not all the time, no, not all the time, some of the time here for sure.
MS. NEWBURY:
Q. And in terms of the, I guess, the exclusion of data points as being outliers, it would seem from your approach that outliers occur in pairs, that you have one high and one low, two high/two low. What is the statistical support for this approach?
MS. ELLIOTT:
A. I don't think there's a statistical approach that I'm going to reference. It's the approach that we've taken to try to smooth out the effect of the highs and the lows, the extremes that we are taking. I don't have-there's not a name for it.
MS. NEWBURY:
Q. Okay, but it is an assumption that if you have one high outlier, then you'll have a matching low outlier and if you have two high outliers,
you'll have two matching low outliers?
MS. ELLIOTT:
A. We're taking the approach that we can have a more stable result by excluding the two high and the two low points.
MS. NEWBURY:
Q. And is it possible then that these are not true outliers, that data points that you've excluded?
MS. ELLIOTT:
A. It depends on what your standard is of true outliers.
MS. NEWBURY:
Q. And what is a standard for true outliers?

MS. ELLIOTT:
A. I don't know, I guess, you said that. I don't know what your standard is.
MS. NEWBURY:
Q. I'm going to refer you to several exhibits. These are the exhibits SD 1 through SD 4. So, looking here at SD 1 , now this is Mr. Doherty's, I guess, summary is his understanding of your regression analysis. And this one, SD 1, would be the ten-year period ending December 2012. Is that correct?

Page 158
Did I understand that you've have a chance to review these exhibits before?
MS. ELLIOTT:
A. Yes, um-hm.

MS. NEWBURY:
Q. Okay. And can you just identify what the low and high outliers here, that he's identified, but these were your outliers.
MS. ELLIOTT:
A. I can't see it on the screen to--I mean, I don't see the full page to tell you that.
MS. NEWBURY:
Q. Okay. I've got copies of the exhibit, I could provide that. I can provide these to you.
MS. GLYNN:
Q. There's a binder on the desk containing all the exhibits as well.
MS. NEWBURY:
Q. I'll be referring to (inaudible - away from microphone) markings on that. So, I'll just leave that -
MS. ELLIOTT:
A. Okay, yes.

MS. NEWBURY:
Q. So, can you identify then the two low outliers
and the two high outliers?
MS. ELLIOTT:
A. Sure, on the column, Excluded Data Points, you take the bottom four Y's and that would be the four excluded points.

\section*{MS. NEWBURY:}
Q. Sorry, I can't hear you very well.

MS. ELLIOTT:
A. Sorry, on the column labelled Y's, Excluded Data Points, you take the bottom four Y's, is the simple way to express it, over the last ten-year period as the excluded four points.
MS. NEWBURY:
Q. And which are the highs and which are the lows?
MS. ELLIOTT:
A. Well, on the yellow highlight you can see the values of the percentage changes and the ones that are positive are the highs and the ones that are negative would be referred to as the lows.
MS. NEWBURY:
Q. And can you identify those by the year, half year?
MS. ELLIOTT:
A. Well, yes, I can. 2003-1, 2005-1 -

MS. NEWBURY:
Q. Are those high or low?

MS. ELLIOTT:
A. We have to go across and they're low, the negative.
MS. NEWBURY:
Q. Okay. So, those two that you read, 2003 H 1 and 2005 H 1 are low.
MS. ELLIOTT:
A. Um-hm.

MS. NEWBURY:
Q. And 2007-2 and 11-2 are the high values.

MS. NEWBURY:
Q. And could we go through the same exercise for the other three exhibits. So, what are the two low outliers for SD 2?
MS. ELLIOTT:
A. 11-2 and 8-2.

MS. NEWBURY:
Q. That's right, there's only--that's the five year period, so there would be one of each.
MS. ELLIOTT:
A. Yes.

MS. NEWBURY:
\begin{tabular}{|c|c|c|}
\hline & Page 161 & Page 163 \\
\hline & Q. So, the low is? & 1 what did on what we did, present here. \\
\hline & MS. ELLIOT & 2 MS . NEWBUR \\
\hline & -2 and the high would be the 11-2 & 3 Q. My question is more focused on how--and \\
\hline & . NEWBURY: & 4 understand that you've changed, that you've \\
\hline & 3? So, that's a ten year period & 5 abandoned the approach at looking the change \\
\hline & two & 6 in values from on period to a comparable \\
\hline & iers? & 7 period in the following year, and now you \\
\hline & ELLIO & 8 focus on the actual data for that period \\
\hline & A. That would be the 2002-2 and 2005-1 and yes, & 9 \\
\hline & & 10 MS. ELLIO \\
\hline & NEWBURY & 11 A. Yes. \\
\hline & Q. Okay, thank you. And finally SD 4 which & 12 MS . NEWBUR \\
\hline & the five-year period ending June of 2012, and & 13 Q. But still we have an issue that an outlier was \\
\hline & the & 14 identified and that really doesn't have \\
\hline & IO & 15 anything to do with the ease of somebody \\
\hline & A. There we have 8-2 and then the high is 7-2 & 16 understanding what's happening, it's that the \\
\hline & S. NEWB & 17 model somehow, because of, it seems to me it's \\
\hline 18 & Q Oka & 18 because you've decided on a pre-determined \\
\hline & of times, so that's SD1 and SD 3, it's noted & 19 basis, I'm going to take two high and exclude \\
\hline 20 & at 2003 & 20 then and two \\
\hline 21 & den & 21 MS. ELLIO \\
\hline 22 & look the ten year period i & 22 \\
\hline 23 & SD 3, 2012. Can you explain why something & 23 MS. NEWBURY \\
\hline 24 & ery & 24 Q. And you might run into the same problems if \\
\hline 25 & similar ten year period of time with a simple & 25 you look at the data, not just the chang \\
\hline & Page 162 & Page 164 \\
\hline 1 & ac & 1 between periods of time, but if \\
\hline 2 & tlier? & 2 the data itself, if you arbitrarily decide I'm \\
\hline & MS. ELLIOT & 3 going to take two high and take two low, you \\
\hline & A. Sure. The approach that we were trying & 4 might end up with these sort of unusual \\
\hline 5 & here and I stated earlier today that we did & 5 situations, I would suggest, where something \\
\hline 6 & this percentage change approach & 6 that is an outlier for one ten-year period of \\
\hline 7 & exclusions just in our two reports for June & 7 time suddenly loses that characteristic of \\
\hline 8 & 2012 and December 2012, we were trying to & 8 being an outlier for a slightly different ten \\
\hline 9 & what were the larger percentage changes and & 9 year period of time. Is there an explanation \\
\hline 10 & exclude those related data points. It's & 10 for that? \\
\hline 11 & difficult to follow and it's being pointed o & 11 MS. ELLIOTT: \\
\hline 12 & here, rightly so, that it's difficult to make & 12 A. Yes. When we look at the data, when we take \\
\hline 13 & the comparison from different models, we end & 13 the ten years of data \\
\hline & up excluding different points and also, it's & 14 regression model without any exclusions and \\
\hline 15 & hard to follow which points were excluded. & 15 then we run it with the exclusions and we find \\
\hline 16 & And so we acknowledge that and we worded that & 16 that you're getting a better fit with the \\
\hline 17 & to the dollar basis exclusion that's cleane & 17 exclusions because of the volatility of this \\
\hline 18 & and everyone can follow it. And as we also & 18 data. So, when we take out those extreme high \\
\hline 19 & presented today, if in fact, we have chose to & 19 points and the extreme low points, we get a \\
\hline 20 & look the dollar values, exclude those, on a & 20 little better fits in the regression model and \\
\hline 21 & here's the larg & 21 that's the reason for doing it. So, you know, \\
\hline 22 & e & 22 we acknowledge that our approach of the \\
\hline 23 & exclude that over the period that we're & 23 percentage, we thought that might be, you \\
\hline & looking & 24 know, better, but in fact, in hindsight, it's \\
\hline 25 & circumstance, get a bigger negative trend than & 25 confusing and convoluted and so, we've stopped \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Page 165 & & ge 167 \\
\hline & that. On the other hand, we do acknowledge, & & that you would not have this same situation \\
\hline 2 & we had prepared on the dollar basis, the & & here a low outlier for a ten-year period of \\
\hline & lost trend rate would have been a larger & 3 & e disappears in the subsequent ten-year \\
\hline & gative than we calculated. So, it's an & 4 & riod of time because that's arising from the \\
\hline 5 & approach that we take to try to smooth out the & & approach of looking at the changes of the \\
\hline & results from review to review. That's what we & 6 & valu \\
\hline 7 & do & & MS. ELLIOTT: \\
\hline & MS. NEW & & A. Well, when you look at the ten-year trend, \\
\hline & Q. And again, my focus here is not on the chang & & excluding two high and two low and a dollar \\
\hline 10 & values. It's more on the fact that you've & 10 & lue and we looked at it ending December 2012 \\
\hline 11 & got an outlier that suddenly loses its & 11 & and then if we shift everything up to look at \\
\hline 12 & characteristic. Is that because--are you & 12 & ten years ending up June 2012, it's possible \\
\hline 13 & saying that an outlier for the first ten-year & 13 & that there could be different high and low \\
\hline 14 & period lost its characteristic in the second & 14 & data points, just due to what the data is, \\
\hline 15 & ten-year period because of your approach of & 15 & that's possible. \\
\hline 16 & using the change of values? & & M \\
\hline & MS. ELL & 17 & Q. If that there were the case though, so if \\
\hline 18 & A. What I'm trying to express here is, you know, & 18 & something--I understand it now, you've got \\
\hline 19 & I take, I think, Mr. Doherty's comments, & 19 & other six month period of time, you've lost \\
\hline 20 & finding it confusing and showing that there's & 20 & the data point on the more recent end and \\
\hline 21 & a shift in what's excluded when we look at the & 21 & you've gained a data point on the beginning of \\
\hline 22 & two. It's a valid comment. I acknowledge it & 22 & that period of time, but you know, if you \\
\hline 23 & and that's why we changed in our subsequent & 23 & were--something that you decided was an \\
\hline & reports. We tried it, it was a little & 24 & outlier was something that was so unusual from \\
\hline 25 & convoluted and confusing and we stopped using & 25 & the rest of the data, I could see that maybe \\
\hline & Page 166 & & Page 168 \\
\hline & it. We learned. We don't do everything the & & you've got a new even more unusual higher \\
\hline & same all the time. We try to look at what & & point or lower point from the data, but would \\
\hline 3 & e're going; how to do it better. We made a & & till--would that point, that low point 2003 H1 \\
\hline & attempt and it didn't work. & & still not have the characteristic of looking \\
\hline & NEWBUR & & like it's out of keeping with everything else? \\
\hline & Q. But that's not my question. My question is & & MS. ELLIOTT: \\
\hline & did that approach that you've not abandoned & & A. If your question is could we exclude a point \\
\hline & and I understand the reasons for that and I & & looking on a percentage basis and exclude that \\
\hline & accept that, but the approach of focusing on & & ame point looking on a dollar basis, that's \\
\hline 10 & the change of values as opposed to the actual & 10 & possible, sure. \\
\hline & data values themselves, but looking at the & & MS. NEWBURY: \\
\hline & change, how much did it go up; how much did it & & Q. Okay. Now, you still have the SD 1 and SD 4 \\
\hline & go down. Did that actually cause this & & on your desk there, I believe, Ms. Elliott. \\
\hline 14 & situation that you have, an outlier identifer, & & MS. ELLIOTT: \\
\hline 15 & ow outlier of 2003 H1 in December 2012 no & & A. Yes \\
\hline 16 & longer being an outlier. & & M \\
\hline & MS. ELLIOTT: & & Q. So, I'm going to request that you circle all \\
\hline & A. Yeah, absolutely. So, that's the point, that & 18 & of the outliers on the graphs that Mr. Doherty \\
\hline 19 & it's a bit confusing, hard to follow what's & & has on the second page for each of those \\
\hline 20 & excluded and I acknowledge it as something we & 20 & exhibits. So, those outliers that you just \\
\hline 21 & tried. It's hard to follow and yeah, so & 21 & identified for us, the two high and two low \\
\hline & MS. NEWBURY: & 22 & for each of the ten year periods and the low \\
\hline & Q. So, you're saying that if you had not used & 23 & high for each of the five year periods, \\
\hline 24 & that approach, if you focused instead on the & 24 & I'm going to ask that you circle where those \\
\hline 25 & data points themselves and not the changes, & 25 & are on the graphs. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Page 169 & Page 171 \\
\hline 1 MS. GLYNN: & 1 documents. These are her outliers, but she \\
\hline 2 Q. We won't be able to see that on the screen. & 2 hasn't provided a graph showing where the \\
\hline 3 MS. NEWBURY: & 3 outliers are. So, we're asking that she now \\
\hline 4 Q. No, but what I could do is get her to do the & 4 identify those outliers on each of the four \\
\hline 5 circles on this graph and then I'm going to & 5 graphs for our benefit, so that we can \\
\hline 6 request that that be entered as exhibits. And & 6 visualize what she's talking about. \\
\hline 7 then we could have them downloaded and & 7 MS. GLYNN: \\
\hline 8 available on the screen. It's just going to & 8 Q. Are you able to do that, Ms. Elliott? \\
\hline 9 help to identify for us where these different & 9 MS. ELLIOTT: \\
\hline 10 outliers are. & 10 A. I think so, I will try. (REQUEST) \\
\hline 11 MS. GLYNN: & 11 MS. NEWBURY: \\
\hline 12 Q. You want to take that document now and do & 12 Q. And that's the actual in-fitted model lost \\
\hline 13 that ? & 13 cost. \\
\hline 14 MS. NEWBURY: & 14 MS. GLYNN: \\
\hline 15 Q. Yes. & 15 Q. So, the first graph there. \\
\hline 16 MS. GLYNN: & 16 MS. NEWBU \\
\hline 17 Q. To use for questioning now. & 17 Q. Yes. \\
\hline 18 MS. NEWBURY: & 18 MS. GLYNN: \\
\hline 19 Q. Yes. & 19 Q. Okay. \\
\hline 20 MS . GLYNN: & 20 MS. NEWBURY: \\
\hline 21 Q. Okay, I'm not sure--I mean, we only have 15 & 21 Q. Actually both graphs because they are slightly \\
\hline 22 minutes left in the day. & 22 different. Just one is fine. \\
\hline 23 MS. NEWBURY: & 23 VICE CHAIR WHALEN: \\
\hline 24 Q. It's just to demonstrate. Ms. Elliott, I mean & 24 Q. Ms. Glynn, are you clear on what's being \\
\hline 25 we could do this--it shouldn't take more than- & 25 questioned? \\
\hline Page 170 & Page 172 \\
\hline -I mean she's gone through these graphs, so it & 1 MS. GLYNN: \\
\hline shouldn't take more than ten minutes to do & 2 Q. I think so. I'm going to look to my witness \\
\hline 3 that. I mean, this is the exercise that I & 3 and make sure she's - \\
\hline 4 want her to go through. She's given evidence & 4 MS. ELLIOTT: \\
\hline that outliers are easily noticeable to lay & 5 A. I think so, yes. \\
\hline 6 people. I just want to have Ms. Elliott & 6 STAMP, Q.C. \\
\hline 7 identify those on the graphs. & 7 Q. Just for clarification then, Ms. Elliott - \\
\hline 8 MS. ELLIOTT: & 8 MS. GLYNN: \\
\hline 9 A. I don't have a pen, sorry. & 9 Q. How about if I tell you what my understanding \\
\hline 10 VICE CHAIR WHALEN: & 10 is and you can tell me. So, for each of these \\
\hline 11 Q. Would it make sense for her to take this away & 11 exhibits, SD 1 through 4, on the actual in- \\
\hline 12 and do this evening, overnight, rather than & 12 fitted model, lost cost graph, you would like \\
\hline 13 have her do it on the stand right now. & 13 Ms. Elliott to circle the data points that she \\
\hline 14 MS. NEWBURY: & 14 has excluded. \\
\hline 15 Q. Or we can take a break. & 15 STAMP, Q.C.: \\
\hline 16 MR. JOHNSON: & 16 Q. The four and the two with each of these. \\
\hline 17 Q. I'd feel more comfortable if she's not doing & 17 MS. GLYNN: \\
\hline 18 it on the fly. & 18 Q. I think we have it. \\
\hline 19 VICE CHAIR WHALEN: & 19 MS. NEWBURY: \\
\hline 20 Q. Absolutely. & 20 Q. On page 4 of the report at CA OW 001, under \\
\hline 21 MS. GLYNN: & 21 the heading, the data points we considered, \\
\hline 22 Q. So, an undertaking from Ms. Elliott to provide & 22 you stated in the first paragraph, "we \\
\hline 23 a visual aid of the circled outliers. & 23 recognize that the indicated trends produced \\
\hline 24 MS. NEWBURY: & 24 by the regression model, particularly those \\
\hline 25 Q. Each and every outlier on those four & 25 over a five year period can ben sensitive to \\
\hline
\end{tabular}
one or two of the data points". Now, looking that the ten year regressions that you model, you have automatically excluded two of the highest and the two of the lowest data points which would be a total of four data points being excluded. Why would you, in light of your earlier comment that a regression model can be sensitive to one or two of the data points, why would you have excluded four data points?
MS. ELLIOTT:
A. That was the approach that we chose to use in this circumstance given that we felt that there was a fair amount of volatility in the data and made that choice.
MS. NEWBURY:
Q. Okay. So, you comment then that the regression model can be sensitive to one or two of the data points, that doesn't cause you concern when you decided to exclude four of the data points?
MS. ELLIOTT:
A. No, that doesn't. I think what it tells us is that when you look at a lost trend rate and you exclude the data points, and when you
don't exclude the data points, looking at those differences, that tells you something. So, no, I don't have concern.
MS. NEWBURY:
Q. Now, the process of eliminating the two high and two low for the ten year, that actually results in the elimination of 20 percent of your data points.
MS. ELLIOTT:
A. We end up with 16 data points.

MS. NEWBURY:
Q. So, 20 percent -

MS. ELLIOTT:
A. Out of 20.

MS. NEWBURY:
Q. And how many would you have in the five year? Would you not also reduce your data points by 20 percent?
MS. ELLIOTT:
A. They go from ten to eight.

MS. NEWBURY:
Q. So, it's a 20 percent reduction both times.

And have you done an analysis to test for the likelihood that a sample of 20 data points would contain 20 percent outliers?

MS. ELLIOTT:
A. Well, I think in this case, wondering if a sample ten data points would have two outliers. I think what you really want to think about in presenting trend rates that you think are absolutely right and we're not taking that position that's why we have a variety of looks at the data, how credible is this data that we're looking at? And the data is not very credible, this commercial data that we're reviewing. So, I don't think the issue is that we have ten data points and we've looked at, you know, was there a high point here and a low point and what do we get when we exclude these extremes and what's the value? If you want to talk about how good is that, really, the issue is how good is this data for determining a trend rate? And that's what we're saying, there's considerable uncertainty in the data. We think that by excluding the high and the low points it's helping to give a more stable measurement of the trend rate.
MS. NEWBURY:
Q. If a regression model can be sensitive to one Page 176
or two data points, would it not also be sensitive to excluding the data points, one or two or up to four?

\section*{MS. ELLIOTT:}
A. Absolutely. I agree fully. And the issue is that if you just exclude one or two data points and you get a different answer or you use, you know, five years or six years and you get a different answer, yes, that tells you something. It tells you that it's very heard, it's very challenging to pick the right number. It definitely tells you something. MS. NEWBURY:
Q. Okay. And are you saying that if you exclude the data points, that your fit is no better than when you include all of the data points? MS. ELLIOTT:
A. Typically the fit will be better when you exclude high points and low points, typically, yes.
MS. NEWBURY:
Q. Okay. And what was it in this case?

MS. ELLIOTT:
A. I don't have that in front of me.

MS. NEWBURY:
```

    Q. Okay. If you had done an analysis of ten
        years or five years or fifteen years and found that you had a better fit, would you have discarded that or would you have--what would you have done with that?
    MS. ELLIOTT:
A. Well, in those cases where we running a regression analysis and we have ten years of data or whatever time period and the fit is really good, we don't necessarily exclude any points unless again, we think, that that is necessary. Here with this commercial data in Newfoundland it is the most challenging data that we look at. Of all the reviews for lost trend rates, it is the most challenging. It is the most limited data. And so this is the approach that we've taken to try to account for this volatility in this limited database that we have work with. So, you will get a different answer if you exclude one or two data points than if you don't. And we generally find with that exclusion, we get a little better fit. We've taken off these high and lows and smoothed it in a little bit.
MS. NEWBURY:

```

Page 178
Q. Okay. And whether or not you did actually get a better fit, in this particular case, you don't know.
MS. ELLIOTT:
A. I don't have that at my finger tips, no I can't tell you.
MS. NEWBURY:
Q. How did you determine how sufficient the data is for estimating trends?
MS. ELLIOTT:
A. Sorry, could you repeat that, please?

MS. NEWBURY:
Q. How did you determine how sufficient the data was for estimating trends? I mean, you've commented about the data and exclusion of points, how do you determine what is sufficient?
MS. ELLIOTT:
A. Well, with our different standards and in terms of determining whether the data is sufficient for determining lost trends rates is certainly a point discussion and people have different views. The standard for determining whether data is sufficient for credibility, the credibility standard is much
higher than just for the regular experience period that's used. This data would not meet the standard that we would or see in other provinces. And I'm repeating myself, the data is very thin, very volatile and not reliable in terms of the estimate that is provided. So, if you're asking me do I think this data is fully credible and reliable, that whatever trend result pops out of XL model, is the right number? The answer is no. It is not fully credible, absolutely not.
MS. NEWBURY:
Q. And in your various models that you've done as part of your report here or your report to the Board that filed in CA OW 001, did you consider excluding maybe two high and one low or excluding two low and one high or looking at maybe how do the data points look? Do they look like outliers as it relates to the graph? Did you try other combinations and permutations of exclusion of data points? MS. ELLIOTT:
A. Yes, I mean, we have the data and I can't speak to specifically what was antonym when we did that, but as I said, it's a flexible

Page 180
model, we can test different exclusions quite readily, but at the same time, we're trying to prepare a report, where we prepare a report every six months and we're trying to present something that's reasonably stable from report to report. So that if every time we looked at it, we did something completely different, I assure you we'd get a very different answer each time. And so what we're trying to do is find some consistency--and it's not always the same, but try to do the same thing generally from report to report, we calculate the number using the ten year and the five year models that we've selected to use and we average that against what we picked the last time, in trying, if you will, almost weight what we did the last time with what we're finding this time, to have some stability in our findings. You know, it's an approach that we've used because the data is very limited and thin. And we try to follow that approach so that, you know, we're not presenting reports where insurers write in and say, hey, how come you changed your mind and did it this way and that way in every which review that we do.

MS. NEWBURY:
Q. Okay, sure, but in terms of the exclusion of outliers, I understand that these are anomalies and they're different from the data. I assume that they don't occur on a regular basis, that you regularly have every year, you're going to have two outliers on the high side and two outliers on the low side.
MS. ELLIOTT:
A. You can always find the two high points and two low points.
MS. NEWBURY:
Q. But sometimes the high points might actually be just slightly above your typically data. So, it may not actually look like an outlier to a lay person -
MS. ELLIOTT:
A. Sure, and if that that was the case, I think, you know, we can go, I guess, to the next page might help me explain, in the--go down a little bit further please. So, here we have the change from year to year, the 29 percent, you know, we've gone through this before, the -11--so, it's possible that there'd be something where we didn't see anything really

\section*{CERTIFICATE}

2 I, Judy Moss, hereby certify that the foregoing is a true
3 and correct transcript in the matter of a Facility
4 Association Application re: Taxi and Limousine Automobile
5 Insurance Rates heard on the 17th day of November, 2014
6 before the Board of Commissioners of Public Utilities,
7120 Torbay Road, St. John's, Newfoundland and Labrador
8 and was transcribed by me to the best of my ability by
9 means of a sound apparatus.
10 Dated at St. John's, Newfoundland and Labrador
11 this 17th day of November, A.D., 2014
12 Judy Moss
13 Discoveries Unlimited Inc.
high or low, but this data is very limited and volatile, the commercial Newfoundland data. So, if you're telling that it's-is it likely that there won't be any high or low and everything will be consistent? Well, I guess it's possible, but that's not what we're seeing.
MS. NEWBURY:
Q. But every high is not an outlier and every low is not an outlier?
MS. ELLIOTT:
A. As I expressed, we area, our method is to take the two high and the two low, that's what we're doing, yes.
MS. NEWBURY:
Q. Okay. Thank you, perhaps we could continue this tomorrow morning with Ms. Elliott.
CHAIRMAN:
Q. So, 9:30 tomorrow morning?

MS. GLYNN:
Q. We usually start at 9:00 on the second day, but it's up to your discretion.
CHAIRMAN:
Q. Okay, 9:00.

Upon conclusion at 1:29 p.m.
\begin{tabular}{|c|c|c|c|c|}
\hline -\$- & \[
\begin{aligned}
& \mathbf{0 . 4}_{[2]} 24: 1830: 21 \\
& \mathbf{0 . 8}_{[1]} 30: 21
\end{aligned}
\] & -2- & \[
\begin{array}{|c|}
\hline 140: 12 \\
\mathbf{2 1}_{[1]} 3: 9
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
8-2 \\
\mathbf{8 2} \\
\text { [1] } \\
6: 8
\end{array} 160: 19 \\
& 161: 3,16 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathbf{\$ 2 , 5 0 0} \text { [2] } 34: 2098: 14 \\
& \mathbf{\$ 2 . 3} \mathbf{3} \text { [1] } 63: 11
\end{aligned}
\] & \[
\operatorname{001}_{179: 15} 143: 2 \text { 172:20 }
\] & \[
\begin{aligned}
& 2_{\text {[5] } 14: 2598: 6 ~ 135: 22} \\
& \text { 136:24 160:17 }
\end{aligned}
\] & \[
\begin{array}{|l}
\mathbf{2 1 . 5}_{[2]} 6: 12,17 \\
\mathbf{2 4}_{[1]} 59: 20
\end{array}
\] & -9- \\
\hline \$2.6 [1] 63:8 & & 2.4 [3] 30:18 56:2, & \(25{ }^{[2]}\) 73:10 107:11 & \(9_{[1] ~ 15: 20 ~}^{1}\) \\
\hline \$3,000 [1] 98:14 & & 2.9 [1] 30:15 & \(26{ }_{\text {[1] }} 15: 18\) & \(9^{95}\) [1] 36:19 \\
\hline \$3,100 [1] 98:14 & -1- & 20 [42] 6:1,13 49:24 50:5 & 27 [1] 57:1 & \(99{ }_{[1]}^{148: 16}\) \\
\hline \$304,000 [1] 63:13 & \(1_{[14]}^{114} 28: 6,6,22,24\) 29:9,13 & 59:22 73:5,6,9 77:17,19 & \(29^{[2]} 15: 18\) 181:22 & 9:00 [2] 182:21,24 \\
\hline \$349.99 \({ }_{\text {[1] }} 44: 10\) & 135:21 136:1,24 143:2
157:20,21,24 168:12 & 82:25 85:1 101:3 123:4 & & 9:30 [1] 182:19 \\
\hline \[
{ }_{8}^{\mathbf{\$ 3 5}, 000}{ }_{\text {[3] }} 52: 1380: 25
\] & \[
172: 11
\] & \[
\begin{aligned}
& 123: 6,9124: 2,9125: 11 \\
& 126: 11,16 \text { 127:3,25 }
\end{aligned}
\] & \[
\frac{\mathbf{3 -}}{\mathbf{3}_{[6]} 19: 2562: 12}
\] & 9th [1] 62:13 \\
\hline \$350[1] 43:7 & \(1.1274_{[1]} 48: 4\)
\[
\mathbf{1 . 1 3 4}[2] \text { 47:16 48:6 }
\] & \[
128: 14,15129: 15138: 22
\]
\[
138: 24139: 2 \text { 140:10,21 }
\] & \[
161: 5,19,23
\] & -A- \\
\hline \$38,000 [1] \(38: 20\) & \[
\mathbf{1 . 1 3 4 0}[1] \text { 46:12 }
\] & \[
\begin{aligned}
& 138: 24139: 2 \text { 140:10,21 } \\
& 174: 7,12,14,18,22,24,25
\end{aligned}
\] & \(3.5{ }_{[1]} 148: 5\) & a-half [1] \(50: 12\) \\
\hline \$38,674 \({ }_{\text {[1] }} 36: 3\) & 1.322 [1] 48:14 & 20-year [12] 11:25 33: & 3.6 [5] 24:16 25:13 26:1 & A.D \({ }_{\text {[1] }}\) 183:11 \\
\hline \$45,089 [1] 36:2 & 1.6 [1] 56:14 & 20-9:9 78:5 81:25 85:12 & \[
\begin{gathered}
30: 1,10 \\
\mathbf{3 . 8} \text { [1] } 56
\end{gathered}
\] & AB [12] 33:19 34:23,24 \\
\hline \$75,000 [4] 38:20 52:13
80:24 83:10 & \[
\mathbf{1 . 6 6 3}_{[1]} 48: 16
\] & 92:11,15,16 101:6 126:10
139:6 & \[
\begin{aligned}
& \mathbf{3 .}_{[1]} 56: 9 \\
& \mathbf{3 4}_{[2]} 15: 22 \\
& 16: 25
\end{aligned}
\] & 37:2 62:25 127:5,8,14 127.17 128.2.8 129.9 \\
\hline \$75,498 [1] 36:4 & \begin{tabular}{l}
1.7 [3] 24:17 26:1 30:17 \\
1.9 [3] 24:18 30:19 56:10
\end{tabular} & 20-years [2] 79:9 81:15 & \(3499{ }_{[1]} 43: 7\) & abandoned [2] 163:5 \\
\hline - & 10 [4] 45:8,10 50:16 101:2 & 2000
139:24
20
20:1
51:17,18 & \begin{tabular}{l}
35 [1] 84:7 \\
350 [4] 44:14, 15, 25 45:14
\end{tabular} & ability [3] 18:12 146:6 \\
\hline '96 [1] 139:13 & 11 [2] 15:20 68:20 &  & \begin{tabular}{l}
37 [1] 33:13 \\
38 [1] \(36: 7\)
\end{tabular} & \[
\begin{aligned}
& \text { 183:8 } \\
& \text { able }[7] \\
& 86: 4 \\
& 95:
\end{aligned}
\] \\
\hline -+- & \(\underset{\substack{11-2 \\ 161: 10}}{ }\) 160:13,19 161:3 &  & & \[
\begin{aligned}
& \text { 113:21 123:11 155:25 } \\
& \text { 169:2 171:8 }
\end{aligned}
\] \\
\hline +19 [2] 36:9 85:7 & \(118[1]\) 43:20 & 2002-2 [1] 161 & & above [1] 181:14 \\
\hline +2 [1] 91:16 & 11:00 \({ }_{\text {[1] }} 65: 2\) & \(2003[4]\) 160:8 161:20 & \(4_{\text {[11] 23:16 54:12 89:7 }}\) & ABS \(_{[1]} 112: 12\) \\
\hline +3 [1] 91:18 & 11:25 [1] 66:2 & & 90:4 102:24 143:17 & absolutely [11] \(1: 1\) \\
\hline +39 [1] 36:9 & \(12{ }_{\text {[10] }} 46: 4,5,11474: 23\) & 2003-1 [1] 160:1 & 172:11,20 & 116:20 117:13 138:10,
142:13 166:18 170:20 \\
\hline +4.4 [1] 56:8 & 48:3,13 56:12 63:13 70:4 & 2004 [26] 12:6 33:6,12 & \(4.0{ }_{\text {[1] }} 56: 3\) & 175:6 176:5 179:11 \\
\hline +44 [2] 36:8 85:7 & \[
\mathbf{1 2 0}_{\text {[4] }]} 37: 738: 774: 19
\] & 33:15,17,19 34:11,12,23
35:12 36:15,21 37:1 50:2 & \(4.2{ }_{[1]} 56: 15\) & accept [5] 52:11 61:20 \\
\hline +5 [1] 36:9 & \begin{tabular}{l}
120 [4] 37:7 38:7 74:19 \\
183:7
\end{tabular} & 35:12 36:15,21 37:1 50:2 & 42 [1] 54:2 & 62:5 127:19 166:9 \\
\hline \[
\left\lvert\, \begin{aligned}
& +\mathbf{5 0} \\
& 59: 16,16
\end{aligned}\right.
\] & 121 [2] 35:2 98:6 & \[
\begin{aligned}
& \text { 68:21 122:25,25:128:17 } \\
& 129: 9130: 2
\end{aligned}
\] & \(45{ }_{[2]} 36: 7\) 54:1 & accepted \(_{[1]} 129: 8\) \\
\hline +7.6 \({ }_{\text {[1] }} 56: 16\) & \begin{tabular}{l}
127 [2] 43:10 47:3 \\
13 [1] 74:1
\end{tabular} & 2004-2 [6] 35:11 126:4 & -5- & \[
{\underset{129: 1}{\operatorname{accepting}}}_{\text {[2] } 128: 25}^{\text {and }}
\] \\
\hline +95 [3] 36:8 85:7,21 & \[
\begin{aligned}
& \mathbf{1 3}_{[1]} 74: 1 \\
& \mathbf{1 4}[1] 20: 20
\end{aligned}
\] & \[
\begin{aligned}
& 127: 12128: 3,7129: 3 \\
& \mathbf{2 0 0 5}[1] 160: 9
\end{aligned}
\] & 5 [6] 28:12 29:15,17 54:14 & accident [19] 6:5,14 16:10 17:2 33:17 35:15 \\
\hline --- & 15 [35] 69:13,15 70:5,20 & 2005-1 [2] 160:1 161:9 & 82:1 101:2 & 37:6 42:22,25 49:9,10 \\
\hline -11 [1] 181:24 & 74:1 77:9 82:23 83:20 & \(2006[1] 15: 18\) & [10] 4:24 5:1,2,7 6:9 & \[
\begin{aligned}
& 55: 9,12,1956: 1363: 2 \\
& 80: 22,2399: 10
\end{aligned}
\] \\
\hline -14[3] 36:7 85:7,21 & 101:2 117:23 118:14,16 & 2007 [2] 15:18,19 & 37:7 59:2 64:4,8,13 & account [5] 17:18 22:20 \\
\hline -17 [1] 36:9 & 118:16,20,21 119:17 & 2007-2 [1] 160:13 & 56.7 [1] 6:9 & 113:14 134:10 177:17 \\
\hline -26 [2] 36:8 85:7 & \[
122: 21124: 9138: 19
\] & 2008[4] 15:19 16:15,18 & \(58{ }_{\text {[1] 16:23 }}\) & achieve \({ }_{[1]} 27: 12\) \\
\hline -5 [1] 52:9 & 139:3 140:9 153:3,6 & 60:16 & 59 [1] 36:20 & acknowledge [6] 87:10 \\
\hline -59 [2] 36:8 85:7 & 169:21 & \(\mathbf{2 0 0 9}_{[4]} 16: 15,18,19\) 63:6 & & 162:16 164:22 165:1,22 \\
\hline -6 [1] 52:9 & 15-year [11] 73:22 74:6 & \(2010{ }^{[2]} 16: 19,22\) & -6 & 166:20 \\
\hline -and [1] 14:24 & 74:25 76:14,20 82:1 & \(2011{ }_{[15]} 15: 1116: 10,12\) & \(6[5] 15: 21\) 42:7 46:4,21 & acknowledged \({ }_{[1]}\) \\
\hline -having [1] 133:5 & \[
\begin{aligned}
& 118: 12 \\
& 120: 11
\end{aligned}
\] & \[
\begin{aligned}
& 16: 15,22 \text { 19:19,23 } 20: \\
& 21: 1323: 5 \text { 56:4,12 96: }
\end{aligned}
\] & \[
48: 13
\] &  \\
\hline -I \({ }_{\text {[1] }} 170: 1\) & \(1 \mathbf{1 6}_{[2]}^{121: 12 ~ 174: 10}\) & 97:1 121:18 & & 31:11 32:17 44:5 45:6 \\
\hline -it [1] 81:5 & 16th [3] 2:19 68:21 89:7 & 2012 [46] 15:9,16 16:13 & -7- & 7:21 98:22 100:24 \\
\hline -say [1] 75:23 & \(17{ }_{\text {[3] 15:22 33:16 56:5 }}\) & 16:17 17:14,14,21,22 & \(7{ }_{\text {[1] 74:1 }}\) & 106:10 137:14 150:2,15
\(153 \cdot 16,24\) 154:9 163:8 \\
\hline -that's \({ }_{\text {[1] }}\) 42:3 & 17th \({ }_{[2]} 183: 5,11\) & \[
\begin{aligned}
& 18: 1 \text { 20:4 21:21 22:5 } \\
& 23: 6 \text { 28:1 30:1,10 32:8,9 }
\end{aligned}
\] & 7-2 [2] 161:10,16 & 153:16,24 154:9 163:8
166:10 171:12 172:11 \\
\hline -the [1] 105:16 & \(18{ }_{\text {[4] }}\) 46:5,11 47:24 48:3 & 32:10 50:13 56:4,12 & 7.6 [1] 30:20 & ct \\
\hline -there's [1] 115:15 & \(1993{ }_{[3]} 73: 13139: 10\) & 60:16 63:3,6,7 84:10,10 & \(70{ }_{[1]} 37: 7\) & actuaries [1] 94 \\
\hline -we've [1] 70:1 & 140:12 & 121:8 122:17,17,17,25 & \(73_{\text {[11] }} 33: 19,20,22\) 34:24 & \\
\hline -you [1] 140:15 & 1997 [1] 140:12 & 129:3 131:23,24 145:11 & 37:2 127:10,14,17 128:7 & \[
\underset{22: 1}{\text { actua }}
\] \\
\hline & 1998 [3] 73:13 122:24 &  & 128:23 129:10 & adding [2] 146:24 148:11 \\
\hline -.- & & & 75 [1] 84:7 & \\
\hline .0001 [1] 148:5 & 1999 [4] 35:16,24 36:2 38:1 &  & -8- & 64:15 139:4 140:8 address [1] 32:7 \\
\hline -0- & 1:29 [1] 182:25 & 2015 [4] 7:14 73:16 140:5 & \(8{ }_{\text {[2] 45:8,10 }}\) & addressed \({ }_{[1]} 64: 10\) \\
\hline
\end{tabular}
adds [8] 9:17 60:7 61:17 61:24 63:17,20 148:3 149:9
adequate \({ }_{[1]}\) 59:15
adjective [1] 52:3
adjourn [1] 66:2
adjusted [3] 23:25 24:6 24:25
adjuster [1] 84:14
adjusting [1] 132:20
adjustment \({ }_{[16]} 12: 17\)
12:19,21,24 13:12 39:22 39:24,25 43:3,3,6 44:9
44:12,15 45:10 114:25
adopt [1] 2:25
ads [1] 61:12
advances [1] 142:4
advantage [2] 111:1 140:8
advocate [4] 3:4,7 6:16 133:14
affect [3] 8:15 41:3 93:3
affected [2] 127:7 129:16
affecting [1] 99:5
affirmed [2] 1:22 2:4
afraid [1] 87:19
afterward [1] 70:16
again [19] 2:8 30:25 44:4 44:7,9 61:16 63:17 64:15 83:10 85:6 101:18 102:25 103:23 105:23 110:19 118:12 141:1 165:9 177:11
against [1] 180:15
Agency [2] 11:3 42:4
ago [6] 29:25 70:14 83:20
83:21 91:17 140:10
agree [11] 10:16,19 21:19 21:20 22:3 27:8 51:5,8 52:12 59:7 176:5
agreed [3] 2:9 50:21 66:6 ahead [2] 21:6 29:19
aid [1] 170:23
ALAE [7] 43:8 45:4,13
45:13 47:10,25 48:8
Alberta [1] 84:12
allocated [6] 43:3,6 44:8 44:12,14 45:9
allow [1] 139:3
alluded [1] 140:25
almost [1] 180:16
alternative [3] 4:12 9:13 9:16
alternatives [5] 46:14 74:22 131:25 132:1,2
always [6] 23:24 24:3,3 32:2 180:10 181:10
amount [4] 79:15 85:3 162:22 173:14
amounts [1] 81:2
analyses [1] 147:10
analysis [38] 8:8,13
19:13 39:22 58:22 68:24

69:23 71:9 73:22 74:1,7
74:10,25 75:19 76:5,14 88:17 91:3 95:16 100:7 100:22 103:14 113:5,15 116:16 117:5,9 118:3 121:20,21 123:10 131:11 134:9 147:10 157:23 174:23 177:1,8
analyze [2] 11:5 94:6 analyzed [1] 144:11 and-a-half [1] 50:15 anomalies [1] 181:4 anomaly [1] 150:20 answer [17] 24:4 25:13
25:15,20,24 26:1 29:23
31:3 93:17 113:17 120:14 133:25 176:7,9 177:20 179:10 180:8
answers [2] 25:10 26:8 antonym [1] 179:24 apologize [2] 42:2 103:19
apparatus [1] 183:9 appear [2] 47:21 48:7 appendices [1] 21:13 application [4] 3:18
76:16 142:20 183:4
applied [4] 9:5,23 58:15 126:5
applies [4] 13:9 60:13 84:2,15
apply [9] 9:21 13:3,11 41:10 60:20 61:6 62:3,8 142:23
applying [5] 61:1,8,10 61:23 62:6
\(\operatorname{approach}_{\text {[56] }} 3: 17\)
22:11,22,23 23:5 26:22
27:3 32:2,10,13,14,24
39:15 49:25 54:8,10
58:19 70:1,6 71:10,19
75:14,17 94:21 96:11
97:9 120:10,15 123:2
128:19 133:13 134:10,22
134:23 152:8,13 155:17
156:11,14,16,18 157:3
162:4,6 163:5 164:22 165:5,15 166:7,9,24 167:5 173:12 177:17 180:19,21
approaches [1] 28:15
appropriate [1] 52:22
approved \({ }_{[7]}\) 5:2 11:14
58:25 59:3,15,16 64:8
April \({ }_{[1]} 62: 13\)
arbitrarily [1] 164:2
area [1] 182:12
arising [2] 73:3 167:4
arrow [2] 35:11 98:1
asks [2] 95:14 110:19
aspect [1] 82:19
assess [4] 27:21 91:23 93:20 96:20
assessed [1] 80:12
Association [2] 139:1

183:4
assume \(_{\text {[6] }}\) 20:13 34:8
59:17 110:16 129:21
181:5
\(\operatorname{assuming}_{[5]} 58: 20\)
127:4,6 128:20 129:16
assumption [4] 59:7,13 59:18 156:23
assumptions [8] 3:22
4:1,10,12 6:7,10 61:4,10
assure [1] 180:8
attempt [3] 143:5 144:4 166:4
attempting [1] 54:4
attention [1] 3:3
attribute [1] 142:3
attributed [1] 112:10
August [5] 35:12 50:2,5 50:10,12
auto [9] 6:6,14 11:10
42:13 55:16 56:18 75:11 77:4 114:24
automatic [1] 121:2
automatically [3] 117:4

\section*{130:1 173:3}
automobile [2] 42:23 183:4
available [9] 73:7 91:13
93:18 94:3 95:19 96:12
96:16 110:15 169:8
average [26] 7:24 8:4,4
24:19 25:1 35:25 36:1
36:11 37:16,22 47:14
48:2 52:13 79:12,15,18
80:23 82:3 84:7 93:23
98:7,9 99:6 109:2 111:18 180:14
averages [5] 22:25 25:18
46:13 47:12 133:9
averaging [5] 22:23
54:10 94:21,22 132:17
aware [2] 114:15 116:25
awareness [1] 104:5
away [3] 25:22 158:19 170:11
-B-
background \({ }_{[4]}\) 2:11 28:6,24 29:5
bad [1] 116:11
balance \({ }_{[7]} 22: 15\) 53:21
54:9 71:3 94:17 111:14 133:7
balanced [1] 96:10
barring [2] 33:23 47:18
base [1] 60:14
based [22] 4:25 6:7,10
9:19 11:12 15:8 16:23
30:2 47:24 48:6,8,10
60:21 61:8,15,22 68:23
69:16 75:7,19 79:19,25
basis [9] 27:10,14 162:17
162:21 163:19 165:2 168:8,9 181:6

BC [2] 114:23,24
bear [1] 143:18
bearings [1] 43:13
become [1] 10:24
becomes [1] 30:17
beginning [3] 50:23
119:1 167:21
behalf \({ }_{[1]} 34: 6\)
bell \({ }_{[2]} 155: 6,7\)
ben [1] 172:25
benchmark [11] 76:8
86:5,10,13,13,18 87:3
87:16,19,21 88:6
benders [1] 98:11
beneficial [1] 142:10
benefit \({ }_{[2]}\) 108:14 171:5
benefits [9] 6:5,14 33:17
49:10,10 55:9,12,19
56:13
beside [1] 35:11
best [10] 25:12 53:17,25
91:21 93:17 94:5,15
151:8,9 183:8
bet [1] 133:25
better [21] 9:12,15 24:2
52:8 54:2 77:18 85:22
85:25 93:9,11 95:25
114:4 164:16,20,24 166:3
176:15,18 177:3,23 178:2
between [18] 6:22 22:16 32:24 40:7,15,24 41:7
45:8 48:24 50:5 53:21
71:3 110:6 111:15 123:21 133:8 150:3 164:1
beyond [1] 138:13
BI [6] 34:20 56:2 61:5
62:7 127:6 128:23
big [14] 16:22 30:18 38:12
38:13 39:4 65:8,15 98:24
99:5,7,10 103:20 127:9
127:13
bigger [4] 30:24 39:1
91:2 162:25
binder [1] 158:16
bit [15] 6:18 13:16 19:22
28:2 39:13 98:19 123:23
129:7,12 143:14 144:18
150:6 166:19 177:24
181:21
Board \({ }_{[27]}\) 3:21 5:2 6:10
11:14 34:6 58:25 59:14
59:16 64:7,8 67:14,14
67:24 68:1,12,18 76:8
86:18 87:4 88:4,7,17
95:14 110:16,19 179:15 183:6
Board's [4] 3:25 10:24
11:15 56:22
Bob [1] 115:18
bodily [23] 33:11 36:1
38:6 41:1,22 42:13 43:17
44:3 45:7,20 46:3 50:22 51:6 55:8,13 60:25 61:2
62:1 83:13 84:4 86:7
89:2 122:23
book [2] 148:19,21
bottom [8] 43:1,4 47:10
61:7 62:24 70:24 159:4 159:10
box [7] 47:12 48:14 129:7 129:12 131:13,13,18
brakes [1] 112:12
break [2] 65:24 170:15
bring [12] 14:20 18:2 19:23 35:2 40:25 45:24
54:12,16 59:22 62:11 65:6 97:23
brings [1] 94:24
broader [2] 106:9 145:17
brought [1] 3:2
bunch [1] 145:9
business [3] 1:10 84:2 84:16
button [1] 70:21
buy [3] 127:16 128:9,9
Byrne [1] 115:18
-C-
CA [3] 143:2 172:20 179:15
calculate [8] 8:9 39:20
53:8,13 91:16 104:15 135:19 180:12
calculated [11] 24:15
36:5 40:18 41:4 60:8,22 60:24 61:21 111:16 132:3 165:4
calculating [4] 12:18,22 40:7 56:1
calculation [3] 105:11 132:5 151:9
calculations [2] 4:4 27:23
cannot [2] 65:15 77:14
CAOWOO1 [2] 90:4 102:24
capabilities [1] 123:14 capability \({ }_{[2]} 124: 6\) 126:8
capture \({ }_{[1]}\) 27:19
car [2] 8:4,5
care [2] 132:18 133:4
cars [4] 106:17 112:11 112:12,15
case [23] 1:13 25:7 34:18
48:12,16 49:12 55:13 74:7 78:9 99:6 104:12
106:22 108:10 115:2,11
117:16 141:19 150:17
167:17 175:2 176:22 178:2 181:18
cases [3] 84:9 92:20 177:7
catching [1] 134:8
caused [8] 33:12,15,19
58:6 127:13,17,21 150:25
causing [5] 38:20 39:2 115:5 127:9 151:4
certain [6] 30:4 37:11
76:2 143:7 144:6 152:3
certainly [8] 21:9 72:20
76:11 78:8 85:14 138:3
146:25 178:22
CERTIFICATE [1] 183:1
certify [1] 183:2
Chair [4] 1:8 170:10,19 171:23
Chairman [11] 1:1,12 1:17 20:17 66:1,5,11,14 66:20 182:18,23
challenging [8] \(14: 6\) 17:7 74:21,23 111:20 176:11 177:13,15
chance [1] 158:1
change \({ }_{[129]} 3: 2,9\) 4:6
5:5,6 7:18,21 8:2,2,3,9
12:1,10 15:14,17 16:16
16:17,20 17:25 21:21
22:5,8 27:15,17,18,21
30:3,12,19 31:13 32:4
36:15 37:17,23 38:1 39:3
39:6,24 40:3 50:22 51:5
54:6 56:21 57:4,8,22,23
58:2,6,24 59:2,10,18
65:8 77:5,20 79:2,14,18
81:4,7,12 83:6,8,22
84:13 90:20 92:1,3,6,7
92:13,19,24 93:3,8 94:11
95:6,7 96:5,18 98:8,16
98:21,24 99:9,13 101:14
101:24 102:5,9 104:13
106:13 107:7,11,14,22
108:1,2 109:3,9,22 110:2
110:10,11,18 112:1
113:12 114:18,18 115:14
116:4 127:11,20 128:10
130:3,23 134:13,19 141:1 141:13 162:6 163:5,25
165:9,16 166:10,12 181:22
changed \({ }_{[15]}\) 16:13 40:1 52:12 57:15 77:17 97:2 110:16 111:4 127:25 129:6,9 130:15 163:4 165:23 180:24
changes [47] 3:8 4:2 5:19
17:2,4 31:7 32:7 34:21
36:5,20 38:16 50:3 63:18
72:8,15 76:2 78:1,3
79:12 80:17,22 81:18
87:10 90:13 92:14 95:11
99:2 101:18 104:22,24
106:10 107:2 108:11,12
108:20 110:13,14 112:15
113:2 116:2,3 124:4
130:17 159:18 162:9 166:25 167:5
changing [41] 7:25 8:1 33:24 36:13 38:25 72:5
90:7,12,17,18,21,22 91:5
91:11,14,14,18,19,22
92:6 93:22 95:13 96:3
99:8,18 102:12,16,20
103:4,13,16 104:4,19
105:19 106:2,2 108:19
115:10,11 123:22 138:3
characteristic [4] 164:7
165:12,14 168:4
charged [1] 64:25
chart [2] 29:11 79:10
charts [3] 15:5 62:17 139:2
choice [6] 40:23 41:2
71:16,17 73:11 173:15
choices [1] 75:15
choose [9] 11:16 18:14
50:1 67:16 70:8,14 76:20 149:12,14
choosing [2] 71:5 105:24
chose [6] 48:11 55:10,14 55:21 162:19 173:12
chosen [8] 9:17 11:20,25 55:18 67:7,21 70:4 131:12
circle [3] 168:17,24 172:13
circled [1] 170:23
circles [1] 169:5
circumstance [4] 71:5
72:16 162:25 173:13
circumstances [1] 75:10
claim [18] 7:24 8:5 36:11
37:17,22 38:6,12 55:5
61:13 79:12 82:3,15
83:19 84:13 98:7,9 99:6 99:14
claimed [1] 34:21
claims [68] 7:19 12:15
13:5 16:6,8,9,11 33:8 36:1 37:6,7 38:7,8,11,12 38:13,14,15,15,23,24 39:1,2,4,10,16 40:1,11 40:18 41:12 52:12 57:16 63:2 65:3 74:19 80:12
81:6,10,11,13 82:11,17 83:14,15,17,22 84:12,14
84:21 90:8 98:11,24,25 99:4,5,8,8,10 100:18,19 100:20 103:5 104:3 106:16,16 114:11 125:7 127:10
clarification [1] 172:7
clarify \([2]\) 121:19 122:12
cleaner [1] 162:17
clear [2] 79:23 171:24
click [2] 117:12,12 close [6] 1:10 38:4 46:17 83:15,18 98:15
closed [4] 13:7 82:18 83:21 84:15
coincidental [1] 44:10
coincidentally [1] 44:9
colleague [1] 121:19 collision [4] 20:2 75:23 103:23 127:5
column [11] 29:24 35:18 43:5,11,17 46:16 48:17 63:1,14 159:3,9
columns [1] 24:13 combination [1] 8:1 combinations [1] 179:20
combine [3] 61:2 62:2,7 combined [2] 19:7

142:17
comfort [1] 37:4
comfortable [2] 25:6
170:17
coming [3] 2:7 64:14 65:10
comment [14] 11:11
21:23 22:6 51:23 72:22 87:9 88:18 91:2 96:16
96:22 131:12 165:22
173:7,17
commented [1] 178:15
comments [6] 11:12
57:11 72:23 87:11 88:20 165:19
commercial [33] 8:24
8:25 9:2,4,13,16,19
10:14 11:10 13:19 15:24
42:13,23 44:4 52:2 56:17
61:23,25 62:5 71:1 75:11
77:4 78:12 79:25 80:6
89:13,25 94:18 97:13
154:1 175:10 177:12 182:2
commercial-industry [1] 79:19
commission [1] 65:4
Commissioners [1] 183:6
common [3] 23:24
146:13 149:25
comparable [3] 24:6
44:7 163:6
compare [10] \(3: 21,23\)
3:25 23:10,23 25:20 26:5 35:16 47:15,16
compared [8] 4:19 5:9
5:13,15 54:25 95:20 97:1 137:15
comparing [2] 153:20
161:18
comparison [2] 74:14 162:13
complement \({ }_{[3]}\) 58:12 58:14,19
complete [2] 12:10 34:10
completed [3] 4:7,15,22
completely [4] 9:3 97:4 97:8 180:7
complicated [2] 45:17 83:15
components [1] 64:24 comprehensive \({ }_{[1]}\) 145:25
concern [5] 64:16 83:12 128:13 173:20 174:3
concerned [3] 126:11
126:23 127:3
concerns [2] 79:5 80:10
conclude [1] 130:14
conclusion [1] 182:25
conducting [1] 123:10
confident [1] 25:25
confirm [5] 17:9 89:11
101:20,22 154:20
confirmed [4] 71:9 104:21 130:19 131:11 confusing [6] \(41: 7\) 144:18 164:25 165:20,25 166:19
confusion [1] 87:20
connection [1] 41:19
consider [9] 8:10,14,17
70:19 72:20,25 76:4 150:18 179:16
considerable [4] 10:1
60:7 74:9 175:19
consideration [12]
11:13 12:3 18:16 22:17
25:11 72:14 88:20 90:11
103:8 111:9 113:4 132:11
considered [9] 1:5
111:25 131:18 143:8
144:7 152:4 161:21,24
172:21
consistency [4] 3:24
57:13 77:24 180:10
consistent [8] 70:9 74:17
75:16 76:18 78:7 124:20
152:17 182:5
consulting [1] \(2: 15\)
consumer [6] \(3: 4,7\) 6:16 18:17 113:25 117:2
contain [5] 64:18,21
65:14 134:7 174:25
containing [1] 158:16
content [1] 68:6
continuation [1] 1:3
continue [1] \(182: 16\)
continuing [3] 90:8
103:6 141:12
contribute [1] 48:22
convenience [2] 15:4 15:12
convoluted [2] 164:25 165:25
copies [2] 87:12 158:13
correct [28] 2:21 13:20
13:22 31:17 43:21 50:23 50:25 51:2 59:17 66:2 68:1,8 69:4,19 78:18,21 87:6,17 89:21 104:23 107:6 108:3 124:14 130:4 148:16 157:25 163:22 183:3
correctly [2] 37:12 82:10
cost [50] 7:12 8:3,3,4,5
13:6 15:15,17,19 18:24
19:4,8 20:9 33:8,12,13
33:16,22 34:9,23 36:1
37:1,23 38:3 39:6,25
40:18 45:9 56:4,11,16
63:5,8,11 93:20,21 94:20
95:12 98:9,16 99:14,16
101:14,14 108:23 109:3
113:3 129:1 171:13
172:12
costs [49] 7:11 12:12
15:25 24:11 37:22,25
39:17 40:3,12 41:13,15
42:21 43:5 44:5 45:6
52:13 55:5 60:18 62:22

63:15,20 64:17 65:2,3,4 65:5,15 80:12 84:21
90:21,22 91:12,14 98:13
98:23 102:16 104:3
105:19 112:1 113:12
125:7 127:8,14 128:7,23 129:10 142:9,18,25
count [1] 61:13
couple [5] 25:23 29:22 31:1 54:21 135:7
course [2] 45:6 51:19
cover [1] 63:25
coverage [12] 49:11
56:17 62:24 75:23 78:2
91:16 94:12 95:5 103:23 103:24 127:5 145:19
coverages [10] 6:3,4,6
55:2 75:22 106:5 107:4
127:7 128:20 129:17
covered [2] 3:13 65:18
CPI \({ }_{\text {[1] 130 }}\) 130:1
credibility [9] 57:5,8,15
58:3,12,14,19 178:25,25
credible [6] 57:17 72:10
175:8,10 179:8,11
criticism [1] 126:14
cross [1] 66:18
CROSS-EXAMINATION
[1] 66:22
curb [1] 64:17
curiosity [1] 36:6
current [4] 2:12 3:6
57:14 58:20
curve [2] 155:6,7

\section*{-D-}
damage [7] 33:14 38:5 56:9 60:25 61:3 62:2 127:6
data [346] 3:5 4:13 5:11
7:9,9,10,17,18 8:11,11
8:17,19,25,25 9:3,4,8,10
9:13,16 11:4,5 13:17,18
13:19 14:3,6,7,14 15:8 15:24 16:2,5 17:5,11,17 17:20,24 18:1,14,16 21:15,18,22,22 22:1,14
22:18 25:19,23 26:3,3,5
26:10,15,19 28:16 29:22
30:2,11,13 31:1,3 32:3
32:12 35:22 36:12,25
37:3,8 38:23 39:7,19
42:10 44:4,11,13,15 47:1
47:9 52:2,4,20 53:8,12
53:21 57:16 60:5,5 61:9 61:17,23,23 62:6 63:8
67:18 68:25 69:12,16
70:10,20 71:1,22 72:9
73:5,7,19 74:11,13,16
74:18 75:2 76:1 77:6,6
77:19,23 78:1,6,9,9,13
78:20,23 79:5,9,19,25
80:6,11,14,20,22 81:1,4
81:16 83:7,13,13 84:11
85:3,20 91:9,13,18 93:10
93:14,23,25 94:5,18
95:14,15,16,19 96:11,18

96:20 97:13 98:10,16,20
98:23 99:18,19,23 100:3
100:4,5,9 101:1,3,4,11
104:9,11,16 106:12
107:11 108:7,23,25,25
109:13,16,17 110:15,18
110:19 111:2,19 114:16
115:1,8,9,16,24 117:23
118:14, 16,21,21 119:12
119:21 120:11,16,18,25
122:2 123:7,12 126:12
126:16 127:4 128:14,15
129:22 131:6,10 132:11
133:15,22 134:1,12 138:4
138:10,11,15,20 139:2,3
139:4 140:4,9,14,18,21
143:4,7 144:3,7,11,13
145:1 146:25 147:7 150:2
150:3,4,12,15,21,22
151:1,5,7,12,15 152:2,3
152:6,17,19,21 153:11
153:15,16,24,25 154:1,3
154:9,10,12,21 155:4,19
156:10 157:8 159:3,10
162:10 163:8,25 164:2
164:12,13,18 166:11,25
167:14,14,20,21,25 168:2
172:13,21 173:1,4,5,8,9
173:15,19,21,25 174:1,8
174:10,17,24 175:3,8,9
175:9,10,12,18,20 176:1
176:2,6,15,16 177:9,12
177:13,16,21 178:8,13
178:15,20,24 179:2,4,7
179:18,21,23 180:20
181:4,14 182:1,2
database [3] 84:5 103:20 177:18
datas [1] 96:16
date [1] 13:4
dated [3] 2:19 62:12 183:10
deal [2] 84:8 100:21
dealing [10] 2:19 5:10
60:4,5 74:18 81:2 83:12 85:2 149:1,3
death [2] 83:16 99:10
December [24] 15:8,11
15:16 16:4,12,13,15
17:12,14,22 19:19 24:10
30:17,21 32:9 84:10 87:5
96:25 122:17 131:23
157:25 162:8 166:15 167:10
decide [5] 11:17 21:19 22:2 137:18 164:2
decided [5] 70:13 124:19 163:18 167:23 173:20
decimal [1] 47:19
decline [8] 3:10 51:12 51:16 63:13 112:9 141:6 141:15,23
declining [2] 92:25 139:24
decrease [4] 34:23 36:22 56:6 57:1
decreased [6] 37:2 56:5 56:12,17 106:18 128:7
decreasing [1] 111:7
deductible [1] 34:20 definitely [7] 70:21 75:22,24 76:3 106:19 116:23 176:12
demonstrate [1] 169:24 depending [2] 113:22 116:22
derived [1] 68:14 describe [5] 3:16 17:5 18:7 97:21 146:17
described \({ }_{[1]}\) 67:23
describing [4] 52:11,21 147:23 148:25
description [4] 3:21
52:1,23 149:13
desk [2] 158:16 168:13 detail [4] 13:16 58:13 68:5 150:6
detect [2] 123:11 137:6 detecting [1] 126:9
determine \({ }_{[15]} 8: 19,22\)
8:23 9:4 40:12 52:19 60:9 76:17 94:2 100:8 146:13 152:5 178:8,13 178:16
determined \({ }_{[1]}\) 55:6 determining [10] 4:6 12:7 48:25 49:1,2 60:15 175:18 178:20,21,24
develop [1] 77:25
developed [2] 16:7 56:23
development \({ }_{[25]}\) 13:2
13:2,8,11 40:24 41:3,8,9 41:16,19,25 44:17,21 45:20 48:19,22 49:4,16 53:1,10 60:12,19,19 61:8 61:13
difference \({ }_{[21]} 12: 5,16\) 12:25 13:1 32:23,24 40:7 40:9,15,23 55:15 58:7 58:14 63:12 131:22
132:12 150:3,11 151:4
155:3,3
differences \({ }_{[26]} 6: 22\)
10:8,11,12 11:23 13:13
26:20 39:15 41:2 48:24
49:4,9,12 54:16,21 55:21
55:23 77:2 126:15 137:16
153:17 154:11 155:5,6,8 174:2
different [98] 4:18 10:20
11:20 20:8 25:9,10,20 25:23,24 26:4,7 29:22 29:23 31:1,3,8,8 38:11 39:13 40:2,5 48:17,18 49:21 54:5,5,23 55:1,1 61:11 68:24 72:20 74:22 75:22 77:8 79:2 81:20 82:19,24 84:3 92:18 95:4 96:24 97:4,8 100:12 105:13 110:6 118:24 124:5 125:10,13 127:19 130:4 131:15 132:2,4,8 132:9,9,15,16,16 133:21 133:21,22 134:21 135:6 139:11 143:4 144:4,12 144:20,20 148:8 150:8,8 150:11,15,21 151:1,20

152:1 162:13,14 164:8
167:13 169:9 171:22
176:7,9 177:20 178:19
178:23 180:1,7,8 181:4
differentiate [1] 101:11
differently [1] 127:16
difficult [14] 25:25 39:7
39:8 52:4,14 74:20 83:18
94:17 101:11 104:12
111:19 147:7 162:11,12
difficulties [1] 32:11
difficulty [2] 16:2 84:20
\(\operatorname{dip}_{\text {[1] }}\) 33:21
direction [18] 39:14 68:17 92:19 93:3 97:3,5 97:8 105:13 106:13 107:8 107:11,14,22 108:3 124:23 127:24 128:10 138:3
directions [1] 68:4 directly [1] 100:2 disagree [1] 128:16 disappears [1] 167:3 discarded [2] 118:8 177:4
Discoveries [1] 183:13
discretion [1] 182:22
discussed [3] 6:21 53:2 65:24
discussion [7] 13:18
49:8 53:5,11 118:20
145:18 178:22
distinct [4] 124:18
125:24 126:21 134:7
distinguish [1] 123:21
distortion [1] 115:6
distributed [3] 14:9 15:1 28:5
document [4] 35:9 42:16
98:3 169:12
documentation \({ }_{[2]}\)
120:3 147:17
documents [2] 21:1 171:1
doesn't \({ }_{[14]} 24: 3\) 34:18
84:5 85:8,22,24 86:2,2
97:1 107:13 110:18
163:14 173:19,23
Doherty [11] 1:9 3:14
6:22 11:21 27:7,25 32:25
126:11 128:13 147:15
168:18
Doherty's [5] 39:16
50:20 129:20 157:22
165:19
dollar [11] 30:7,8,13,23
162:17,20,21,22 165:2 167:9 168:9
done [23] 3:3 22:20 24:8
35:18 36:14 58:22 64:17 64:21 65:14 68:10 73:22 75:6 76:7 102:19 110:17 118:5 121:21 145:9 155:10 174:23 177:1,5 179:13
down [33] 3:10 15:20,21

15:22,25 16:1 26:17,17 30:20 33:20,22 34:16 36:3,7,10,14,25 37:9,9 42:25 44:6 65:6,13 79:13 85:20 94:25 111:5 127:14 128:23 143:14 155:21 166:13 181:20
downloaded [1] 169:7
downs [1] 98:17
downward [1] 124:22
dramatic [1] 115:14
dramatically [3] 31:7
54:6 96:19
draw [3] 24:20 94:19 133:11
drawing [1] 22:25
driven [1] 128:6
drivers [1] 104:6
driving [1] 112:16
drop [4] 34:14 36:16
127:17,22
dropped \({ }_{[2]}\) 15:19 36:3
dropping [1] 36:7
due [9] 6:15 61:17 71:1
80:11,16 90:7 92:20 103:5 167:14
during [4] 114:8 143:6 144:5 146:7
\(\frac{\text {-E- }}{\frac{\text { earliest [3] 73:20 139:6 }}{}}\)

\section*{earliest [3] 73:20 139:6} 140:9
early [1] 114:12
ease [2] 35:8 163:15
easier [1] 74:16
easiest \({ }_{[1]}\) 5:21
easily [5] 26:8 45:8 73:10
73:24 170:5
easy [4] 23:23 98:13,15 122:2
educated [2] 77:2 149:6
effect [4] 7:14,14 73:15 156:19
effectively [4] 50:4,6,10 128:4
EI [2] 117:1 130:1
eight [6] 50:14 126:3,22 128:5 129:12 174:20
eight-and \({ }_{[1]} 50: 11\)
eight-and-a [1] 129:17
eight-and-a-half [2]
50:7 129:2
eight-and-a-half-year [4] 127:23 129:4 131:13 132:5
either [5] 85:25 104:24
106:8 121:17 150:22
eleven [1] 126:25
eliminate [1] 85:15
eliminating [3] 85:10
85:14 174:5
elimination [1] 174:7
Elliott [371] 1:20,21,23

2:2,4,9,14,18,22 3:1,12 3:19 4:20 5:18,20,25 6:20 7:2,7 8:21 9:9,12 9:14,23,25 10:18,25 11:22 13:21,25 14:5,12 14:17,22 15:3 17:9,15 18:9,25 19:14 20:1,21 20:24 21:7 22:12 23:7 23:12,18 26:10,13 27:11 28:8,11,13 29:19,20 31:16,21 32:5,19 33:1 34:4 35:2,4,10,21,23 37:16,19 39:18 40:14,22 41:5 42:9,19 43:16,20 43:23 44:2,23 45:5,15 46:1,22 47:4 49:6,20,23 50:24 51:7,25 53:6,18 54:15,19 55:25 56:24 57:10 58:5,16 59:12,23 60:2 62:11,14,19 63:24 64:1 65:18,21 66:22,25 67:8,12,25 68:7,16 69:5 69:11,18,24 70:7,17 71:12,20 73:4,8,23 74:8 75:3,9,21 76:9,19,25 77:13,22 78:14,22 79:8 79:22 80:5,19 81:22 82:8 82:14 83:1,5 84:1 85:4 85:13,19 86:1,4,9,14,20 86:24 87:7,18 88:1,5,11 88:15 89:3,12 90:16 91:6 92:2,8,17 93:15 94:14 95:9 96:9 97:6,18,22 98:5 99:22 100:1,14,25 102:1,7,13 103:10,15 105:1,9 106:4,11,23 107:5 108:4,16,21 109:11 109:23 110:3,12 111:8 112:5,23 113:6,16 114:20 116:5,19 117:6,11,17,22 118:4,9,13,18 119:6,11 119:16,24 120:7,12 121:1 121:7,13,24 122:7,18 123:5,13,18 124:11,15 125:3,9,18 126:1,17 127:1 128:18 130:5,9,20 130:24 131:3,7,21 133:1 133:6 134:11,17 135:3 135:11,18,25 136:5,11 136:16,21 137:2,7,12,23 138:2,9,14,18,23 139:8 139:14,18,23 140:2,11 140:22 141:4,9,14,21 142:2,12,19 143:11 144:15 145:3,10,16,22 146:2,8,19 147:6,11,18 147:25 148:18 149:5,16 149:24 150:9,24 151:17 151:23 152:7,23 153:5 153:14,23 154:8,17,22 155:1,12,16 156:4,15 157:2,10,15 158:3,9,22 159:2,8,16,25 160:4,10 160:18,23 161:2,8,15 162:3 163:10,21 164:11 165:17 166:17 167:7 168:6,13,14 169:24 170:6 170:8,22 171:8,9 172:4 172:7,13 173:11,22 174:9 174:13,19 175:1 176:4 176:17,23 177:6 178:4 178:10,18 179:22 181:9 181:17 182:11,17
end [25] 16:12,17 17:11
17:12,20 20:4 21:16,23
50:13 63:3,6 74:21 87:4
87:4 122:14,16 129:3
134:8 135:22 136:25
144:3 162:13 164:4
167:20 174:10
ended [1] 135:7
ending [15] 24:9,9 28:1
30:1,10,17,19,20 131:23
131:24 157:25 161:6,13
167:10,12
ends [1] 139:17
ensures [1] 96:15
entered [1] 169:6
entire [1] 79:16
environment [3] 76:4
92:21 93:2
equal [3] 19:7 41:17 44:24
equally [1] 70:5
error [3] 3:4 6:17 151:15
especially [1] 100:10
established [1] 19:11
estimate \({ }_{[23]} 3: 8\) 13:5
16:9,11,13 17:4,19 23:2
30:6 41:16 42:5,21 43:8
44:20 60:17 63:10,20
77:18 84:11 94:22,22
103:24 179:6
estimated [12] 33:7 43:5
44:5 58:6,22 63:4,8,15
63:17 65:19 80:13 95:25
estimates [15] 18:4 30:4
62:21 78:25 81:4,8,11
82:10,15,16 83:21 84:9
95:19,20 110:15
estimating [4] 6:12
84:21 178:9,14
evening [1] 170:12
event [2] 34:22 114:15
everybody [2] 1:2 37:24
evidence [14] 69:3 72:18 74:4 78:17 105:25 109:7
119:2 120:2 128:12
129:20 130:13 140:25 147:16 170:4
exact [2] 35:8 44:11
exactly [1] 21:25
examination [3] 3:14 27:7 66:19
EXAMINATION-IN-CHIEF
[1] \(2: 4\)
examine [1] 7:17
example [28] 15:17
16:10 24:24 29:21 30:9
38:19 41:1,23 46:11 48:3 63:22 70:13 83:9 85:6 96:25 97:23 103:17
109:14,24 112:4 114:7
125:6 127:9 135:7 140:10 151:2 153:12 155:13
examples [3] 112:3 113:10 136:4
excel [3] 118:5 123:15 149:20
except [1] 48:13
excerpt [1] 15:10
exclude [44] 8:12 18:13
20:7 22:19 27:3 30:2,7
30:12,23 31:12,13 32:3
45:9 47:10 75:1,2 77:7,7
113:21 116:22 120:4,6
133:20 152:11,18,19,25
155:18 162:10,20,22,23
163:19 168:7,8 173:20
173:25 174:1 175:15
176:6,14,19 177:10,20
excluded [16] 26:2 27:16
31:1 119:22 157:9 159:3 \(159: 5,9,12\) 162:15 165:21 166:20 172:14 173:3,6,9
excludes [4] 12:18 18:14 44:13 45:13
excluding [20] 17:25 25:8,19,23 26:10 27:13 29:22 30:11 32:12 40:4 120:10,15 154:4 157:4 162:14 167:9 175:21 176:2 179:16,17
exclusion [9] 27:8 69:1
153:4 156:9 162:17
177:22 178:15 179:21
181:2
exclusions [17] 20:10 28:16 31:8 54:6 120:18 132:9 144:21 145:1 153:16,21,22 154:10 162:7 164:14,15,17 180:1
Excuse [2] 20:17 42:16 exercise [3] 122:24
160:15 170:3
exhibit \({ }_{[20]} 14: 25 \quad 15: 1\)
19:25 23:13,16 28:3,5 28:14,21 42:2,11 43:9 45:19 46:21 47:5 54:12 97:25 142:22 145:11 158:13
exhibits [10] 20:5 45:18 157:19,20 158:2,17 160:16 168:20 169:6 172:11
existence [1] 93:12
exists [1] 126:8
expect [5] 92:13 100:13 100:20 109:8 156:1
expenses [15] 12:17,19
12:21,24 13:12 39:22,24 39:25 43:3,4,7 44:9,12 44:15 45:10
experience [56] 2:9 7:9
9:1,2,6,19,21 11:6,25 12:15 16:7 26:18 33:4 47:9 48:10 49:15,25 50:16,17 55:11 57:20 60:14,15,21,22 61:1,7 61:11,16 62:4,22 64:5,9 64:10 69:8,13,15 71:22 72:3,4,6 79:1 108:24 114:11 115:12 116:7,7 126:6 142:23 143:6,10 144:6,9 146:7 150:16 179:1
expertise [1] 2:10
explain [22] 7:5 10:23
11:19 19:22 22:10 26:11 32:22 34:2, 17 39:14
45:14 48:23 49:20 56:20 57:7 62:17 72:14 114:17 128:22 144:13 161:23 181:20
explainable [1] 151:22
explaining [2] 103:2 105:23
explains [3] 39:9 48:20 116:12
explanation [3] 151:14 151:16 164:9
express [6] 21:8 51:9 144:16,22 159:11 165:18
expressed [3] 21:14 152:9 182:12
expressing [1] 81:25
external \({ }_{[5]} 8: 14\) 75:25
93:2 113:20 114:5
extreme [4] 26:22 154:2 164:18,19
extremes [3] 27:19
156:20 175:15

\section*{-F-}

FA \({ }_{[73]} 3: 5\) 5:1 6:7,17 9:17 10:11,20 11:24 12:8 12:18 13:7 33:2,10,11 34:10 36:14 37:4,13 39:19 44:5,12,18 45:13 45:21 46:9 47:8,17,22 48:2,7,16,21 49:2,13
50:11 51:10,11,16,19 52:10,14,19 55:3,9,16 56:7 57:14,18 58:18,20 58:23,24 59:4,7,19 60:13 60:14 61:2,14,20 62:20 64:12 65:1,6 79:24 98:6 101:4,8 125:20 128:3 132:4 133:18 142:22
FA'S [10] 34:7 43:9 44:13 45:24 46:2 52:6 54:17 61:16 62:5 64:5
facilities [2] 2:19 3:18
Facilities' [1] 35:3
Facility [14] 8:19,24 9:3 10:17 40:11,25 49:21,24
51:22 58:15 62:12 128:13 139:1 183:3
Facility's [6] 6:23,24
44:21 53:3 56:20 123:2
fact [21] \(52: 1856: 11\) 80:16 99:7 111:1,10
117:15 126:20 128:15
129:22 130:1 132:14
139:19 152:6 153:11,13
154:21 162:19,24 164:24 165:10
factor \({ }^{[9]}\) 32:23 41:17
44:21 46:9 48:14,15 55:4 60:13 142:24
factors [50] 12:5 13:2,3
13:3,8,11 37:4,11 40:24
41:3,8,8,10,20,25 44:17
45:20 46:5,8,18 47:7,12

47:15,17,23 48:8,12,20 48:22,24 49:1,5,13,16 53:1,10 60:9,12,19,20 61:8,14,14,15 93:3 111:25 113:1,4,11,14
fair [1] 173:14
fairly [2] 149:6 154:2
familiar [1] 97:16
far [3] 24:13 63:14 155:7
farther [1] 73:9
feedback [1] 21:14
felt [2] 72:9 173:13
fender [1] 98:11
few [6] 38:17 73:3 74:19
87:11 124:22 134:6
fewer [1] 75:24
fid [1] 103:6
fifteen [1] 177:2
fifties [2] 24:25 25:1
fifty [1] 34:20
figure [2] 55:10 101:10
file [2] 115:7 116:9
filed [2] 1:10 179:15
filer [2] 4:9 10:6
files [1] 13:7
filing [55] \(2: 20\) 3:6,6,23
3:24 4:22,23 5:3,5,8,9
5:13,15 7:6,10 10:3,6,7
10:10,12 12:2,8,10, 12
12:17,20 15:7 34:8 39:19
40:12,17,20 48:9 54:15
55:18 56:8 57:14,14,18
57:23 58:21 59:4 62:23
62:23 63:7,9 64:4,8,12
79:24 98:6 101:8 114:23
114:25 128:22
filings [7] 3:20 5:10,14
34:5,7 86:5,10
final \({ }_{\text {[4] }}\) 46:6,9 55:15 124:22
finally [2] 4:14 161:12
finding [8] 3:7 6:16 22:7
33:9 40:8 63:18 165:20
180:17
findings [16] \(3: 15\) 4:16 5:18 15:8 22:3 24:8 26:6
30:9 31:4,23 49:5 61:12
61:18 71:4 72:2 180:18
fine [7] 12:19 43:24,24
66:8 93:9 111:2 171:22
fine-tune [1] 95:25
fine-tuning [1] 96:8
finger [1] 178:5
fingertips [1] 76:10
firm [1] 2:16
first \({ }_{[27]}\) 4:3 14:20 23:19
41:6,22 46:25 54:22 60:3
66:19 67:2 71:25 73:4
82:23 85:11 111:18 119:3 120:17 125:25 126:24
134:6 135:7 136:10,12 137:19 165:13 171:15 172:22
fit [32] 24:2 25:12 41:9 52:5,7,14,16,20 53:4,12

53:14 81:3 100:5 114:4 120:25 131:14 133:18,25 137:24 147:7 148:11 149:9 150:13,14 153:17 164:16 176:15,18 177:3 177:9,23 178:2
fits [10] 25:3,7 51:22 52:2 91:2 100:3 101:4,5 147:2 164:20
fitted [6] 26:19 137:14 150:3 153:25 154:9 172:12
five [65] 20:8 30:19,20 50:16 60:15 69:7,10,17
70:23,23,24 71:25,25
72:1,3,12,17 73:20,20
73:21 75:7,20 77:6 82:25 85:11 86:7 89:1 91:17 96:6 99:16 102:21 104:2 104:14,25 105:10,14,15 105:16,20,24 107:3,19 109:8,18 118:22 119:3,4 119:5 120:4 131:24 132:24 134:19 135:14 137:5,8 139:6 140:8 153:1 160:21 168:23 172:25 174:16 176:8 177:2 180:13
five-year [31] 12:4 22:24
24:11,18 27:1 78:5 90:6 90:9 91:4 100:7,22 101:19,20 102:4,9,15 103:3,7,18 105:4 106:1 106:8 107:8 108:14 109:10 110:7 111:12 119:2 133:10 135:23 161:13
flaw [1] 37:13
flexibility [1] 116:21
flexible [6] 18:11,20 73:25 74:5 117:1 179:25
fluctuations [1] 80:17 fly [1] 170:18
focus [4] 62:25 64:22 163:8 165:9
focused [2] 163:3 166:24
focusing [1] 166:9
follow [7] 111:21 162:11 162:15,18 166:19,21 180:21
follow-up [1] 4:14
followed [1] 56:21
following [2] 20:18 163:7
force [3] 131:2,14 137:17
forced [2] 129:2 131:18
forces [5] 8:14 50:11
76:1 113:20 129:7
foregoing [1] 183:2
form [1] 121:8
forming [1] 24:21
forms [1] 61:3
forth [2] 59:5,8
forties [1] 25:1
forward [7] 7:16 34:15 35:17 94:24 116:10

\section*{129:13,18}
found [9] 4:24 12:11 22:4
52:19 55:3,9 72:9 151:3
177:2
four [20] 11:23 13:13 20:13 21:9 129:23 132:15
132:15 152:21 153:21
159:4,5,10,12 170:25
171:4 172:16 173:5,9,20 176:3
fourth [2] 12:25 144:2
fraud [5] 103:22,25
104:5 109:15 112:4
frequency [38] 7:21,22
8:2 18:23 19:3,6 20:10
24:12,23 25:2 50:22 51:6
51:13,17 52:5,8 55:12
90:20 92:22,25 106:15
112:1,6,10,17,22 113:2
113:11 114:11,18 115:15
139:20 141:2,13,15,23 142:7,17
frequently [3] 92:15 94:10 96:5
Friday [2] 15:1 28:5 front [1] 176:24
full [8] 57:15 85:1 119:9 125:11 137:13 139:2 140:21 158:11
fully [5] 57:17 93:13 176:5 179:8,11
future [3] 56:2,10,15
-G-
gained [1] 167:21
gears [1] 57:4
gee [3] 31:1 72:19 115:10
general \({ }_{[5]}\) 3:16 11:2 42:3 67:2 75:14
generally [11] 7:5 49:14
69:3 75:13,16 90:6 92:12
103:4 106:1 177:22
180:11
GISA [20] 11:3,4 16:5 16:24 42:3,12,20 43:5 44:11 45:13,22 47:5,13
47:15,19,22 48:12,18
73:10 93:25
GISA's [7] 43:8 44:15
46:18 47:11 48:6,7,14
given [7] 68:17 77:1,2
113:10 142:6 170:4 173:13
giving [1] 137:24
glimpse [1] 41:24
Glynn [118] 1:7,15,19,25
2:5,6,17,24 3:11 4:17
5:17,23 6:19 7:4 8:18 9:7
9:11,22 10:15,22 11:18
13:14,23 14:2,10,15,19
14:24 17:8 18:6,22 19:10 19:24 20:19,23 21:5 22:9 23:4,9,15 26:9 27:6 28:4
28:10,18,23 29:2,6,10 29:14,18 31:10,18 32:1 32:16,21 34:1 35:1,6,20 37:15 39:12 40:10,21

42:6 43:14,19,25 44:19
45:2,12,23 46:20 47:2
49:3,19 50:19 51:4,21
52:25 53:15 54:11 55:20
56:19 57:3 58:1,11 59:9
59:21 62:10,16 63:23
65:17,23 66:3,9 89:9,17
89:24 98:2 122:11,20
143:19,24 158:15 169:1
169:11,16,20 170:21
171:7,14,18,24 172:1,8
172:17 182:20
goal [2] 67:5,9
goes [4] 36:7,10 128:2
141:20
gone [5] 32:17 76:2
128:23 170:1 181:23
\(\operatorname{good}_{[21]} 1: 2\) 2:3 19:18
25:7 27:18 29:21 38:19 41:23 52:3 65:25 83:9 100:4 137:24 147:2 148:6 148:11 150:14 151:16 175:16,17 177:10
government-run [1] 114:24
graph [5] 169:5 171:2 171:15 172:12 179:19
graphically [2] 26:14 153:25
graphs [7] 154:11 168:18 168:25 170:1,7 171:5,21
great [2] 52:3 133:18
greater [1] 69:22
group [1] 38:14
guess [14] 11:23 54:20 60:3 77:1,1,2 103:16 126:14 156:5,9 157:16 157:22 181:19 182:5
guideline [2] 12:23 56:22
guidelines \({ }_{[5]}\) 3:25 6:11 10:24 67:14 68:5
-H-

H1 [8] 121:18 122:24,25 160:8,9 161:20 166:15 168:3
H2 [2] 122:25,25
half [22] \(18: 133: 6,15,18\)
34:22 35:15, 17,25 36:2
37:6 42:22,25 50:13
123:24,24 126:3,22,24
126:25 128:5 129:12 159:23
half-year [1] 129:18
hand [1] 165:1
handing [1] 40:11
handle [2] 40:1 83:18
handled [2] 16:8 81:13
handling [3] 39:16 40:18 65:4
happening [4] 104:2
109:14 112:16 163:16
happy \({ }_{[1]} 25: 5\)
hard \({ }_{[7]} 31: 5\) 37:1 53:11
63:20 162:15 166:19,21
harm [3] 140:20,23,23
hazard [1] 77:1
head [1] 77:14
heading [1] 172:21
heads [1] 38:5
hear [2] 148:15 159:7
heard [3] 119:1 176:10
183:5
hearing [2] 1:3 114:9
help [8] 85:1,8 109:18
114:4,6 140:13 169:9 181:20
helpful \({ }_{[5]} 14: 8\) 23:14
65:1 148:24 149:3
helping [1] 175:22
helps [2] 18:2 152:11
hereby [1] 183:2
hey [2] 72:23 180:23
\(\mathbf{H i}_{[1]}\) 66:25
high [58] 18:15 25:1
26:16,25 27:2,9,13,17
31:12,13 41:20,21 114:12
116:12 120:5,6 147:20
152:12,25 153:1,11,22
154:4,12 155:22 156:12
156:24,25 157:4 158:7
159:1 160:3,13 161:3,10
161:16 162:21 163:19
164:3,18 167:9,13 168:21
168:23 174:5 175:13,21
176:19 177:23 179:16,17
181:7,10,13 182:1,4,9
182:13
high/two [1] 156:13
higher [22] 24:1 41:15
41:18 44:20,24,25 45:3
48:19,22,23 49:16,17,18
53:2 56:8 77:12 95:17
146:23 150:17,22 168:1 179:1
highest \({ }_{[8]} 30: 7,11,14\)
30:23 32:3 152:10 155:18 173:4
highlight \({ }_{[1]} 159: 17\)
highlighted [4] 24:14
35:7,15 79:11
highlights [2] 35:9 97:25
highly [1] 149:6
highs [3] 156:19 159:14 159:19
highway [1] 104:7
hindsight \({ }_{[1]}\) 164:24
historical [5] 7:9,11,17 7:18 93:23
hold [1] 42:10
hope [2] 6:1 48:20
hopefully [2] 35:14 113:17
hundred \({ }_{[3]}\) 6:15 34:19 148:16
hundred-and [1] 99:3
hypothetical [1] 136:8
idea [1] 96:17
identical \({ }_{[1]}\) 47:22
identifer \({ }^{[1]}\) 166:14
identified \({ }_{[14]} 57: 6\)
58:13 103:14 104:23 106:8 108:11 109:21,25 123:25 126:20 139:10 158:7 163:14 168:21
identify [17] 7:17,23 8:6 88:25 96:24 98:3 106:13 143:5 144:5 146:6 158:6 158:25 159:23 161:6 169:9 170:7 171:4
identifying [2] 8:7 107:10
ignore [1] 85:11
immaterial [1] 40:9
impact [17] 12:7,9,11,14 12:14 31:14 33:8 34:9
55:5,7 58:2 59:10 114:14
116:17 128:17,21 129:22
implemented [1] 35:13
imply [1] 107:13
implying [1] 107:21
important \([7]\) 10:9
25:22 53:19 60:3 64:20
97:12 142:10
in-fitted [1] 171:12
inadequacy [3] 59:2,4 59:6
inadequate [2] 58:21 59:8
inaudible [1] 158:19
Inc [1] 183:13
include [20] 9:20 12:24 18:12,16 19:1 21:22 22:6
39:21,23 40:11,17 44:8
50:1 106:3 113:21 116:21 146:1 148:7 151:7 176:16
included [5] 9:2 12:20 18:18 21:12 121:23
includes [3] 19:2 44:11 45:13
including [8] 40:4 43:6 43:8 60:14 119:15,17 137:8 149:9
incorporate [5] 113:19 113:24,25 114:1,2
incorporated [1] 148:3
incorporating [1] 97:11
incorrect [1] 105:2
increase [14] 4:24 5:2,3
6:12 16:23 17:1 58:25
59:1 64:5,9,11,13 65:16
98:23
increased [2] 36:19 141:12
increases [5] 57:21
64:15,18,21 65:12
increasing [5] 92:23
104:3 111:6 141:5 144:10
incremental [1] 46:4
indeed [4] 74:5 101:23
104:21 130:19
indemnity [2] 13:9 40:4
independent [3] 124:7 124:12,16
independently [1] 6:4 index [3] 18:17 114:1 117:2
indicate [4] 15:13 146:23 148:2,10
indicated \({ }_{[10]} 75: 16\)
91:18 100:10 102:4,8 108:19 119:19 121:20 141:2 172:23
indication [12] 4:6 6:8
31:20,24 49:18 57:21 58:8,10,23 59:16,19 100:3
indications [7] 8:23
56:21 58:4 59:11 60:8 60:10,16
industry [4] 42:20 61:15
78:13 79:25
inflation [1] 38:5
influence [1] 125:7
influenced [1] 124:24
information [17] \(4: 25\) 16:8,24 23:17 28:7,24 38:22 42:1 54:14 91:20 91:23 93:18,19,24 114:5 118:2 145:8
initiative [2] 65:2,7
injuries [1] 83:17
injury [25] 33:11 36:1
37:25 38:2,6 41:1,23
42:13 43:17 44:3 45:8 45:20 46:3 50:22 51:6 55:8,13 60:25 61:2 62:1 83:13 84:4 86:7 89:2 122:23
inquiries [1] 116:1
insight [1] 93:25
instability [3] 14:7 22:14 26:5
instead [3] 51:18 100:24 166:24
Insurance [3] 11:2 42:4 183:5
insured [3] 8:4,5 106:17
insurers [9] 11:11,16
67:16 72:22,23 87:9
88:18,22 180:23
integral [1] 33:4 intending [1] 151:10 intent [1] 101:13 interesting [4] 46:10 71:24 112:7 114:21
introduce [1] 117:3 introductory [1] 57:11
intuitive [1] 99:3
intuitively [5] 33:9,25 34:17,25 37:5
investigate \({ }_{[1]} 116: 8\)
isolate [2] 37:1,10
isolating [1] 36:21
issue [25] 10:9 16:1,4
20:22 55:3 57:6,9,22,25 58:13,19 60:3 70:8 78:3

80:14 81:1,15 83:7 84:15
85:2 150:10 163:13 175:12,17 176:5
issues [6] 6:21 59:25
80:20 103:22,25 132:18
it'd \({ }_{[1]} 98: 15\)
item [4] 54:14 55:7 61:13 61:18
items [1] 12:15
itself [5] 71:9 72:18 112:3 142:7 164:2
\(\frac{-J-}{\text { JACQUELINE }}\)

JACQUELINE [1] 2:5
Jennifer [2] 66:22 143:21
John's [2] 183:7,10
JOHNSON [1] 170:16
joining [1] 2:8
judgements [1] 40:16
judgment [2] 9:23 10:1
judgments [7] 10:4,7
10:10,13,16,19 22:10
Judy [2] 183:2,12
jumped [1] 36:4
jumps [2] 38:18 39:9
June [19] 17:12,14,21 24:9 28:1 30:1,10,19 32:9 63:7 87:4 97:1
111:5 122:17 131:24
161:6,13 162:7 167:12
jurisdictions [2] 68:11 75:18

\section*{\(\frac{\text {-K- }}{\frac{\text { keep }[31}{} 21.171 \cdot 10 \text { 118.2 }}\) \\ keep [3] 21:1 71:10 118:2}
keeping [3] 151:6,13 168:5
kept [1] 145:7
key [5] 6:3 11:23 13:1 64:16 114:7
kind \({ }_{[11]} 12: 25\) 24:4,14 35:13 40:9 41:18 48:4 84:8 116:10 129:5,6
knowledge [1] 114:22
\(\frac{\text {-L- }}{\frac{\text { labelled [2] 28:22 159:9 }}{\text { lat }}}\)
labelled [2] 28:22 159:9
Labrador [3] 44:4 183:7 183:10
land [1] 112:8
large [10] 32:7 38:15 39:10 55:6 64:11 74:16 78:6 81:5,10 162:21
larger [9] 31:22 49:11 49:13,14 80:17 84:4 85:3 162:9 165:3
last [43] 4:22,24 6:24 8:16 18:1,1 34:8 40:16,17 54:14,18,24 55:2,3,7,16 56:1,9,13 58:9 60:15 63:4,7,17 64:6,11 65:9 73:11 82:25 86:6 89:18

101:8 104:2 105:16 107:16 108:24 112:18 126:21 128:5 142:3 159:11 180:15,17
latest [1] 107:18 lay [8] 146:18 148:25 149:3 155:20,24 156:3 170:5 181:16
layer [1] 125:12
layman [2] 26:15 154:1
lead [1] 44:25
leading [2] 49:16,17
learned [1] 166:1
least \({ }_{[1]}\) 8:16
leave [2] 110:23 158:21
left [1] 169:22
left-hand \({ }_{[1]}\) 15:10
legislation [1] 116:3
length [2] 131:16 133:5
lengths [1] 132:16
less [4] 63:16 68:25 70:2
85:24
level \({ }_{[8]} 3: 8,95: 197: 12\)
31:24 33:23 59:14,19
liability [3] 6:5 55:17 61:4
lie \({ }_{[1]} 155: 8\)
light [1] 173:6
likelihood [1] 174:24
likely [3] 38:25 41:21 182:3
limit [1] 132:24
limited [11] 5:11 60:5
61:17 93:13 97:13 147:1 154:3 177:16,18 180:20 182:1
limits [1] 129:17
Limousine [1] 183:4
limousines [1] 2:20
line[5] 35:14 61:7 81:3 84:16 150:13
lined [1] 46:19
lines [1] 84:2
link [1] 115:15
longer [7] 82:7 131:19 143:9 144:9 161:21 162:1 166:16
look [131] 7:19 10:4,6 16:14,14,19 17:11,19,21 19:2 20:9 24:11,23 25:15 26:18,19 30:5,25 36:18 37:25 38:18 41:23 46:11 46:12 53:24 63:5 64:2 64:20 65:2,3,4,5 69:12 69:15 70:1,23 71:6,21 71:24 72:25 73:11,18 84:4,6,10,25 85:3 91:20 94:1,3 95:15,23 96:20 98:7,21 103:22 104:7,14 106:12,24,25 107:18 108:5,25 109:18 110:18 110:20 111:10,11 113:18 114:5,14,15 115:9,12 116:1,16 117:1,10,15 118:16,21,22,23 119:3

119:12 120:13,17 121:17
124:2,25 126:15 127:22
129:24 130:1 131:22,23
131:24,25 132:1 135:12
135:14 137:13,14,17
138:3,10,15 142:11
144:17 146:13 149:8 153:20,21 154:9,11
161:22 162:20 163:25
164:1,12 165:21 166:2
167:8,11 172:2 173:24
177:14 179:18,19 181:15
looked [23] 17:13 25:12
25:21 29:24 33:5 36:15
52:12 56:3 77:9 80:23
101:21 106:7,22 117:24
119:2,9 126:11 130:2
140:3,14 167:10 175:13 180:6
looking [81] 3:24 7:23
12:6 15:15 22:23 24:24
26:21 28:14 30:15 37:21
46:25 52:8 53:20 57:13
70:21 72:2,12 74:22 79:9
84:16 89:10,13 91:12
95:18 96:12,12 97:10
98:10 100:22,23 101:2
106:19 107:12 108:14
109:4 110:24 115:16
123:4,6,9 126:12,24
129:22 133:15,17 134:12
134:18 135:1 136:9 137:5
138:6 140:8,12,16,20,23
146:10,11,21 148:9,22
150:1,2 152:25 153:15
153:17,24 155:2 156:5
157:21 162:24 163:5
166:11 167:5 168:4,8,9
173:1 174:1 175:9 179:17
looks [2] 70:24 175:8
loses [2] 164:7 165:11
loss [143] 6:25 7:5,8,15
8:3,3,15,20,23 9:4,18,20 9:24 10:5,14,17,21,23
11:7,20 12:12,16,18,19
12:21,22,23,24 13:1,8
13:10,12 14:4 15:6,14
17:10,19 18:24 19:4,8
20:4,9 24:11,15,22 25:16
27:14 28:14,17 30:6
33:13,23 39:21,21,23,23
39:25 40:5,7,13,19,24
41:3,3,7,9,16,18,19,21
41:24 43:2,3,6 44:8,12
44:14,17,20,21,25 45:4
45:10,20 47:9 48:19,22
48:23,25 49:4,16,17 50:8
52:24 53:1,9,10,16,23
54:17 55:10,23 56:7,22
60:12,18,19 61:8,19,20
61:22,25 62:5 64:22
67:15,17 68:23 69:6,16 77:3 79:23 81:2 86:15 86:21,23 87:21 88:2,7 88:12,16,21 90:24 91:7 91:12,15 96:14 108:23 110:4 133:14 142:9,18 142:23,25
losses [13] 13:4,10,12 41:10 43:2 44:8 47:25 48:8,10 60:17 64:23

78:25 95:20
lost [23] 13:2 33:16 56:4
56:11,16 90:21 93:20,21
94:2,20 95:11 109:3
112:1 113:3,12 165:3,14
167:19 171:12 172:12
173:24 177:14 178:21
lots [1] 38:13
low [63] 18:15 26:16,25
27:2,9,13,17 31:12,14
115:3,4 120:5,6 128:6 147:20 152:12 153:1,1 153:12,22 154:5 155:22 156:12,13,25 157:1,5 158:6,25 160:3,5,9,17 161:1,6,14,20,21,24 162:1,22 163:20 164:3 164:19 166:15 167:2,9 167:13 168:3,21,22 174:6 175:14,21 176:19 179:16 179:17 181:8,11 182:1,4 182:9,13
lower [11] 6:18,18 31:15 31:19,24 58:10 77:12 95:18 150:17,23 168:2
lowered [2] 57:18,19
lowest [5] 30:8 32:4
152:10 155:19 173:4
lows [4] 156:19 159:15
159:21 177:24
-M-
madame \({ }_{[1]} 1: 6\)
magical [1] 131:20
magnitude [1] 37:11
maintain [1] 133:20
major [1] 100:19
makes [2] 24:6 99:2
March [1] 89:7
mark [1] 107:8
markings [1] 158:20
massive [1] 127:14
match [2] 46:15,17
matching [2] \(156: 24\)
157:1
material [3] 12:13 49:5 65:18
matrix [1] 62:24
matter [2] 84:15 183:3
matters [1] 1:5
may [12] 2:19 3:12 68:21 121:12,22,22 133:25
140:17 150:17 151:22,22 181:15
mean [21] 38:19 44:21
47:18 49:7 63:14 73:9
85:5 97:1 142:9 147:24
148:20 149:17,18 154:2
158:10 169:21,24 170:1
170:3 178:14 179:23
meaning [1] 148:14
means [4] 19:16 144:10 144:14 183:9
measurable [1] 12:14
measure [40] 14:13

36:23 37:22 39:3,5,8 72:7 90:18,19,23 91:7 91:10,11 92:3,9 93:21
95:11,14 98:8,15 99:9 99:12,13,17 100:2 101:12 102:17 105:18 107:17,20 107:23 108:22 109:1,5 113:20 130:11 146:5,11 147:21 151:10
measured [3] 102:14,18 126:5
measurement [6] 27:20 102:16 114:6 151:9 152:13 175:22
measurements [1] 111:16
measures [1] 147:19
measuring [13] 37:12 98:20,22 100:8 101:13 105:3,5 107:12 134:13
134:19 144:17,19 155:5
meet [2] 101:7 179:2
Memorandum [3] 35:3
45:25 54:13
mentioned [4] 22:13
73:4,18 112:3
merged [2] 15:5 125:14
method [1] 182:12
methodology [2] 3:22 58:18
methods \({ }_{[2]}\) 4:1,11
microphone [1] 158:20
middle [5] 48:5 63:6
70:23 71:25 73:20
might [25] 4:11,12 11:12 19:18 38:2 76:12 91:16 92:21 98:14 111:25 113:1 113:11 114:17 119:22 126:9 128:1 134:7 137:16 151:13,14 163:24 164:4 164:23 181:13,20
million [2] 63:9,11
mind [1] 180:24
minor [3] 34:21 38:8 100:18
minus [18] \(16: 16,18,21\)
24:16,17,18 25:2,13 26:1
26:1 30:1,10,15,17,17 30:20,21,21
minute [2] 72:24 143:18 minutes [2] 169:22 170:2
miss [1] 42:16
missed \({ }_{[1]} 64: 2\)
missing [1] 135:9
misstatement \({ }_{[1]} 51: 1\)
misunderstanding [1] 20:14 misunderstood \({ }_{[1]}\) 103:2
mix [10] 38:11,15,25 39:9
81:9 98:24 99:1,7,9,18
mixes [1] 100:12
model [63] 18:8,10,20
19:2 22:2,11,17 23:10
24:2,17,18 25:21 26:24

27:1,25 33:2,5 37:14
41:15 50:2 52:18 53:13 53:16 54:1 67:21 73:24
74:6 113:19 114:3,6
115:1,6 116:21 117:1,12
122:3 125:11,11 127:5
128:3,25 130:10 137:9
146:15,25 148:4,8 149:9
149:20 151:7 152:12
163:17 164:14,20 171:12
172:12,24 173:2,7,18
175:25 179:9 180:1
modelled [2] 143:4 144:3
modelling [3] 144:13,18 152:2
models [16] 18:19,23 19:1 20:11,13 21:17 23:23 24:6,11,17 52:21
145:9 146:5 162:13
179:13 180:13
modified [1] 115:8
moment [2] 29:25 43:12
month [1] 167:19
months [23] 11:1,4 17:11
19:12 53:24 91:9,11,21
93:6,19 94:1,6,9 95:4,15
95:24 96:1 108:7 110:24
111:3 132:22 162:1 180:4
morning [10] 1:2 2:11
67:1 74:5 78:18 98:18
119:20 123:23 182:17,19
Moss [2] 183:2,12
most \({ }_{[16]} 15: 6\) 17:22,23 17:24 72:1 73:21 109:7 114:25 132:24 137:5 139:5 146:18 150:21 177:13,15,16
move [3] 39:13 57:5 123:1
moving [3] 34:15 94:23 124:4
Ms [758] 1:7,15,19,20,21
1:23,25 2:2,4,4,6,9,14
2:17,18,22,24 3:1,11,12
3:19 4:17,20 5:17,18,20
5:23,25 6:19,20 7:2,4,7
8:18,21 9:7,9,11,12,14
9:22,23,25 10:15,18,22
10:25 11:18,22 13:14,21
13:23,25 14:2,5,10,12
14:15,17,19,22,24 15:3
17:8,9,15 18:6,9,22,25
19:10,14,24 20:1,19,21
20:23,24,25 21:5,7 22:9
22:12 23:4,7,9,12,15,18
26:9,10,13 27:6,11 28:4
28:8,10,11,13,18,23,25
29:2,6,10,12,14,16,18
29:19,20 31:10,16,18,21
32:1,5,16,19,21 33:1
34:1,4 35:1,2,4,6,10,20 35:21,23 37:15,16,19 39:12,18 40:10,14,21,22 41:5 42:6,9,19 43:14,16 43:19,20,23,25 44:2,19 44:23 45:2,5,12,15,23 46:1,20,22 47:2,4 49:3,6 49:19,20,23 50:19,24 51:4,7,21,25 52:25 53:6

53:15,18 54:11,15,19
55:20,25 56:19,24 57:3 57:10 58:1,5,11,16 59:9 59:12,21,23 60:2 62:10 62:11,14,16,19 63:23,24 64:1 65:17,18,21,23 66:3 66:9,22,22,24,25 67:8 67:10,12,20,25 68:3,7,9 68:16,19 69:5,9,11,14 69:18,20,24 70:3,7,12 70:17 71:7,12,15,20 73:2 73:3,8,17,23 74:3,8,24 75:3,5,9,12,21 76:6,9,13 76:19,23,25 77:10,13,15 77:22 78:11,14,16,22
79:3,8,17,22 80:2,5,8,19 81:14,22 82:4,8,12,14 82:21 83:1,3,5,23 84:1 84:17 85:4,9,13,17,19 85:23 86:1,3,4,9,11,14 86:16,20,22,24 87:1,7 87:14,18,23 88:1,3,5,9 88:11,13,15,23 89:3,5,9 89:10,12,15,17,20,24 90:2,16,25 91:6,25 92:2 92:5,8,10,17 93:5,15 94:7,14 95:2,9,22 96:9 96:23 97:6,15,18,20,22 98:2,5 99:20,22,24 100:1 100:6,14,16,25 101:17 102:1,3,7,11,13,23 103:10,12,15 104:17 105:1,7,9,22 106:4,6,11 106:21,23 107:1,5,25 108:4,9,16,18,21 109:6 109:11,20,23 110:1,3,9 110:12,21 111:8,24 112:5 112:20,23,25 113:6,9,16 114:13,20 115:22 116:5 116:13,19,24 117:6,8,11 117:14,17,19,22 118:1,4 118:7,9,11,13,15,18,25 119:6,8,11,14,16,18,24 120:1,7,9,12,22 121:1,3 121:7,10,13,15,24 122:4 122:7,9,11,15,18,20,22 123:5,8,13,16,18,20 124:11,13,15,17 125:3,5 125:9,16,18,21 126:1,7 126:17,19 127:1 128:11 128:18 129:19 130:5,7,9 130:12,20,22,24 131:1,3 131:5,7,9,21 132:13 133:1,3,6 134:3,11,15 134:17,24 135:3,5,11,16 135:18,20,25 136:3,5,7 136:11,14,16,18,21,23 137:2,4,7,10,12,21,23 137:25 138:2,5,9,12,14 138:16,18,21,23,25 139:8 139:12,14,16,18,21,23 139:25 140:2,6,11,19,22 140:24 141:4,7,9,11,14 141:17,21,25 142:2,5,12 142:14,19 143:1,11,13 143:19,22,24 144:1,15 144:23 145:3,5,10,14,16 145:20,22,24 146:2,4,8 146:16,19 147:4,6,8,11 147:13,18,22,25 148:13 148:18,23 149:5,11,16 149:21,24 150:5,9,19,24 151:11,17,21,23,25 152:7

152:16,23 153:2,5,9,14
153:18,23 154:6,8,14,17 154:19,22,24 155:1,9,12 155:14,16,23 156:4,8,15 156:22 157:2,6,10,13,15 157:18 158:3,5,9,12,15 158:18,22,24 159:2,6,8 159:13,16,22,25 160:2,4 160:7,10,12,14,18,20,23 160:25 161:2,4,8,11,15 161:17 162:3 163:2,10 163:12,21,23 164:11 165:8,17 166:5,17,22 167:7,16 168:6,11,13,14 168:16 169:1,3,11,14,16 169:18,20,23,24 170:6,8 170:14,21,22,24 171:7,8 171:9,11,14,16,18,20,24 172:1,4,7,8,13,17,19 173:11,16,22 174:4,9,11 174:13,15,19,21 175:1 175:24 176:4,13,17,21 176:23,25 177:6,25 178:4 178:7,10,12,18 179:12 179:22 181:1,9, 12,17
182:8,11,15,17,20
multiple [1] 126:9 multiplication [1] 46:8 must [1] 36:17
\begin{tabular}{c}
\(-\mathbf{N}-\) \\
\hline
\end{tabular}

\section*{n [1] 84:9}
name [1] 156:21
names [1] 154:15
necessarily [10] 80:11 81:8 108:2 128:14 130:16 142:8 145:7 151:15,18 177:10
necessary [1] 177:12 need [5] 3:9 34:19 57:16 104:9 132:10
negative [9] 30:18,24 31:22 112:22,24 159:20 160:6 162:25 165:4
never [2] 70:19 110:16 new [31] 11:4 16:7 17:25 56:10 84:12 91:9,20,22 93:7,18,24,24 94:22 95:8 95:14,19,19,24 96:11,16 96:18,19 109:16 110:15 110:15,19 111:15 116:6 127:12 129:10 168:1
Newbury [269] 20:25
28:25 29:12,16 66:23,24 67:10,20 68:3,9,19 69:9 69:14,20 70:3,12 71:7 71:15 73:2,17 74:3,24 75:5,12 76:6,13,23 77:10 77:15 78:11,16 79:3,17 80:2,8 81:14 82:4,12,21 83:3,23 84:17 85:9,17 85:23 86:3,11,16,22 87:1 87:14,23 88:3,9,13,23 89:5,10,15,20 90:2,25 91:25 92:5,10 93:5 94:7 95:2,22 96:23 97:15,20 99:20,24 100:6,16 101:17 102:3,11,23 103:12 104:17 105:7,22 106:6

106:21 107:1,25 108:9 108:18 109:6,20 110:1,9 110:21 111:24 112:20,25 113:9 114:13 115:22 116:13,24 117:8,14,19 118:1,7,11,15,25 119:8 119:14,18 120:1,9,22 121:3,10,15 122:4,9,15 122:22 123:8,16,20 124:13,17 125:5,16,21 126:7,19 128:11 129:19 130:7,12,22 131:1,5,9 132:13 133:3 134:3,15 134:24 135:5,16,20 136:3 136:7,14,18,23 137:4,10 137:21,25 138:5,12,16 138:21,25 139:12,16,21 139:25 140:6,19,24 141:7 141:11,17,25 142:5,14 143:1,13,22 144:1,23 145:5,14,20,24 146:4,16 147:4,8,13,22 148:13,23 149:11,21 150:5,19 151:11,21,25 152:16 153:2,9,18 154:6,14,19 154:24 155:9,14,23 156:8 156:22 157:6,13,18 158:5 158:12,18,24 159:6,13 159:22 160:2,7,12,14,20 160:25 161:4,11,17 163:2 163:12,23 165:8 166:5 166:22 167:16 168:11,16 169:3,14,18,23 170:14 170:24 171:11,16,20 172:19 173:16 174:4,11 174:15,21 175:24 176:13 176:21,25 177:25 178:7 178:12 179:12 181:1,12 182:8,15
newer [1] 82:11
Newfoundland [12] 42:23 44:3 75:11 76:8 77:4 80:1 84:12 114:10 177:13 182:2 183:7,10

\section*{Newfoundland/Labrador} [1] 42:12
next [21] 15:19,20 38:9 38:10,13,14 39:2,5 60:23 64:15 65:10 83:11 84:7 94:13 99:11,15 100:18 119:4 124:21 152:20 181:19
nice [1] 78:4
nine [1] 16:18
nineties [1] 133:18
ninety [1] 25:4
noise [14] 36:12,24 37:3
39:7 97:16,24 98:19 99:6 99:19 100:9,23 101:3,12 101:15
non-PPV [3] 61:1,6,9
non-private [1] 60:21
north [2] 5:7 64:13
note [1] 116:9
noted [5] 6:15 40:22 90:3 152:1 161:19
notes [2] 43:10 64:2
noticeable [2] 156:2 170:5

Nova [3] 68:12,14,18 November [2] 183:5,11 now [64] 16:17,20,25 22:13 28:21 34:11 39:14 43:9 46:17 50:11,14 56:7 57:4 58:17 61:6 64:12 68:10 75:14 80:4 87:22 89:6 93:10 95:6 97:3 99:17 108:1 111:2,4,5,6 112:12 121:8 123:1 124:4 125:8 127:15,18,22 128:8 129:1,5,8,10,12,13,20 130:13 140:14,25 142:15 143:20 144:11 155:24 157:21 162:1 163:7 167:18 168:12 169:12,17 170:13 171:3 173:1 174:5
number [47] 18:13 20:18 23:20 26:4 31:5,6 42:2,7 44:7,14,25 48:3,4 54:3 57:8,18 70:14 74:2 76:21 77:8,12,12 81:5 86:19 90:8 95:17,18,18 100:19 103:5 105:4,6 106:15,16 117:2 132:7 133:16,23 142:21,24 146:9,22 152:17 153:8 176:12 179:10 180:12
numbers [12] 29:25
33:10 35:7 45:14 63:14 84:8 111:13 114:16 130:18 132:10 133:22 148:20
numeric [1] 110:13 numerous [4] 19:18 20:11 118:24 119:12

\section*{-O-}
objection [2] 58:17 149:17
objective [1] 67:5
observing [1] 93:7
obvious [3] 155:20 156:1 156:3
occasion [1] 92:16
occur [4] 115:17 126:9 156:11 181:5
occurred [6] 7:20 12:6 101:25 116:15 127:12 139:9
occurring [3] 8:15 45:18 109:17
occurs [3] 82:24 92:25 106:20
off [6] 45:11 71:24 72:16 77:14 117:13 177:23
often [6] 78:5 92:11 93:1 116:6 148:15 149:25
older [3] 136:13,15,19
oldest [1] 136:19
Oliver [16] 1:21 2:16 9:8 12:2 13:19 18:7 26:12 31:11 40:24 49:22 50:15 50:21 51:23 53:3 56:23 68:22
once [3] 38:1 80:23 110:17
one [105] 3:2,10 10:1
11:24 16:1,6,12,16,20
16:22,25 17:16 20:5,24
22:14 23:22 24:16 25:8
25:19,25 26:2 27:2,2
28:19 29:24 31:5 32:10
36:3 37:20 38:7,12 39:1
39:4 55:15 57:12 60:12
62:25 63:9,16 65:8,9,15
70:25 71:23 76:18 80:24
81:19 82:22 83:6,8,10
84:6 94:12,18 97:3,11
99:11 100:17 101:24
110:22 112:6 115:8
117:13 118:19 120:4,17
122:1 123:12 124:7,24
125:13,19 132:4 133:15
133:19,23 138:7 142:16
142:21,24 143:16 148:24
149:12,18 150:14 152:19
153:1,1 156:12,12,24
157:24 160:22 162:21
164:6 171:22 173:1,8,18
175:25 176:2,6 177:20 179:16,17
one-time [1] 33:21
ones [5] 20:9 146:13
159:18,19 161:10
Ontario [7] 74:15 84:4 84:11 103:19,20,21 109:15
onward [1] 36:4
open [1] 82:17
opened [1] 84:13
opinion [1] 126:15
opposed [6] 31:12 67:23 111:3 139:3 149:14 166:10
order [1] 1:3
ours [1] 52:6
outlier [29] 149:22 150:1
150:7,18 152:6 154:21
156:1,3,24,25 161:14,20 161:21,24 162:2 163:13 164:6,8 165:11,13 166:14 166:15,16 167:2,24 170:25 181:15 182:9,10
outliers [40] 26:12,14
75:1 119:20,22 121:22
121:25 143:8 144:8 152:4 153:13 154:2 155:25
156:10,11,25 157:1,8,12
157:14 158:7,8,25 159:1
160:17 161:7 168:18,20
169:10 170:5,23 171:1,3
171:4 174:25 175:4
179:19 181:3,7,8
outline [1] 15:13
output [1] 121:2
overall [1] 3:8
overnight [1] 170:12
overview [1] 67:3
own [10] 22:2 34:7 36:6 49:15 57:19 60:13 61:16 67:23 68:15 147:10
\(\mathbf{P}_{[8]} 147: 14,20,24\) 148:1 148:5,9 149:2,14
P-Tests [2] 52:16 101:6 p.m [1] 182:25
package [1] 42:7
page [23] 6:1 20:17,20
35:2 43:20,21 45:24
46:25 47:3 59:22 60:23
68:20 89:7 90:4 102:24
143:2,16,17 148:20
158:11 168:19 172:20
181:19
painful [2] 23:21 35:19
pairs [1] 156:12
paper [2] 19:11,15
paragraph [5] 90:5
102:25 143:15 144:2
172:22
parameter [8] 50:2
113:21 117:25 130:10
146:24 148:2,11,12
parameters [6] 11:19
52:17 69:1 113:19 121:25 146:14
paraplegic [3] 38:10 83:16 99:11
part [9] 33:3 41:22 47:7
47:11 48:24 98:6 120:15 127:4 179:14
participation [1] 115:14
particular [19] 4:21 5:3
7:10 10:10 70:10 71:5,9 71:11 76:16 94:11 95:5
101:22 103:14 117:16
121:12 151:1,5 162:24
178:2
particularly [1] 172:24
parties [2] 2:8 64:20
party [2] 6:5 61:4
passage [2] 112:2 113:13
passenger [6] 11:9 55:11
55:14 60:22 89:14,25
passing [1] 112:14
past [3] 56:2,10,14
pattern [32] 7:23 91:11
91:15,18,22 92:7,13,22
93:4,8,9,11,22 95:7,10
95:13 101:18,24 102:5
102:10,20 104:4 105:18
106:18 109:2,5,10,22
110:2 127:21 129:11
141:6
patterns [22] 7:18 8:7
72:5,7 74:13 90:7,12,14
90:17,18 91:5,19 92:14
102:12 103:5,13,16
104:20 106:2 108:11,19
123:22
patters [1] 8:6
Paula [3] 1:20 2:4 66:22
PD \({ }_{[2]} 61: 5\) 62:8
PE [10] 14:25 19:25 28:6 28:12,22,24 29:9,13,15 29:17
pen [1] 170:9
people [7] 146:18 148:25

149:2,3,7 170:6 178:22
per [4] 8:4,5 43:7 45:4 percent [74] 3:9 4:25 5:1
5:2,7 6:8,9,13,13,15,17 15:18,20,21,21,22,23
16:16,18,20,21,23,25
24:16 25:3,4 30:2,10,16
33:13,16,19,20,22 34:24
36:7,8,8,8,9,19,20 37:2
38:3 45:8,11 52:9 56:5
56:11,13,14,18 58:24,24
58:25 59:2 63:13 64:4,8
64:13 91:16,19 127:10
127:15,18 128:8,23
129:10 174:7,12,18,22
174:25 181:22
percentage [24] 27:10 27:14,15,17,17,21 30:3 30:12 31:13 32:4,7 36:5 37:23 40:3 57:1 58:7,10 59:20 109:2 159:18 162:6 162:9 164:23 168:8
perform [3] 19:13 153:10 154:16
perhaps [12] 27:18 37:13
72:11,12 94:8 103:1
111:2 116:3 143:14
144:18 151:8 182:16
period \({ }_{[149]} 8: 10\) 11:24
12:4 18:12 30:4,15 32:8
32:8 36:18,21,21 38:16
38:16 43:11 44:6 46:4
48:3,14 49:20 50:4,7,9
50:14 51:17 70:9 77:17
79:16 81:9,25 82:1,1,2,6 82:7 85:12 88:19 90:6 90:11 91:4 92:11,15,16 94:12 95:8 96:5 97:2 98:9,10,21,21 101:6,15 101:15,19 102:4,9,15 103:3,9,18 104:25 105:4 105:6,21 106:1,8,9 107:3 107:15,15,18,24 108:12 108:15 109:3,10,19 110:7 117:20 122:12,13 123:10 124:3,4,9,10,24,25 125:1 125:12 126:3,4,10,12 127:23 129:3,4,15,18 131:19 132:6,19,23 133:12 134:5,6,14,20 135:1,8,14,23,24 136:9 137:1 139:7 140:16 141:18 143:6,10 144:6,9 146:7 152:20,21 153:12 157:25 159:12 160:22 161:5,13,18,22,25 162:23 163:6,7,8 164:6,9 165:14 165:15 167:2,4,19,22 172:25 177:9 179:2
periods [29] 22:18 31:9
47:14,23 48:2,13 49:22
54:5,23,24 55:1 68:24
79:13 81:6 101:21 122:24
127:25 132:8,16 133:10
133:10,21 143:9 144:8
144:20 145:1 164:1
168:22,23
permutations [1]
179:21
person [5] 111:18 155:20 155:24 156:3 181:16
phenomena [1] 112:18 phone [1] 115:18
pick [7] 53:16 54:3 74:21 75:16 104:12 133:23 176:11
picked [2] 48:6 180:15
picking [3] 104:11
115:18 132:7
picture \({ }_{[1]} 91: 2\)
piece [2] 46:25 150:14
pieces [1] 150:4
places [1] 47:20
play [1] 53:4
plus [3] 15:18 16:20 30:19
point [49] 3:10 6:18 16:14 17:24 18:1,16 19:19 25:19 26:3 27:2,2 27:24 30:14 77:7,7 101:20,23 114:21 115:25 116:12 120:5,21,21 123:25 127:16,19,21 128:6 151:1,5,7,12 152:6 152:19 154:21 155:21,21 166:18 167:20,21 168:2 168:2,3,3,7,9 175:14,14 178:22
pointed \({ }_{[1] ~ 162: 11}\)
points [91] 8:12 18:14 25:9,23 26:3,11,16,16 26:22,25 27:1,9,9,13 28:16 29:23 30:2,11,13 31:2,12,14 32:3,12 57:2 58:10 59:20 75:2 101:23 108:25 119:21 120:6,11 133:21 143:7 144:7 152:3 152:10,12,18,21 153:11 154:12 155:4 156:10 157:5,8 159:3,5,10,12 162:10,14,15 164:19,19 166:25 167:14 172:13,21 173:1,4,5,9,10,19,21,25 174:1,8,10,17,24 175:3 175:12,21 176:1,2,7,15 176:16,19,19 177:11,21 178:16 179:18,21 181:10 181:11,13
poor [7] 52:16,17 64:6 64:10 100:4 101:4,7
pops [1] 179:9
portal [1] 73:11
position [3] 2:12 12:13 175:7
positive [2] 38:21 159:19
possibilities [1] 129:23
possible [10] 76:12
110:23 124:16 139:1 157:7 167:12,15 168:10 181:24 182:6
potential [1] 130:3
pre-conceived [1] 96:17
pre-determined \({ }^{[2]}\)
71:17 163:18
precipitation [8] 18:19 114:1 115:2,3,13 148:4 148:7 151:3
predetermined [2]

131:16 133:5
preliminary [1] 1:4 premium [2] 64:24 65:6 preparation [1] 4:5
prepare [18] 4:15 11:6 12:23 14:4 17:22 21:9 23:3 30:5 53:22,23 67:19 87:22,24 88:7 96:21 145:13 180:3,3
prepared [8] 2:18 23:13 28:3,11 42:3 76:11 142:22 165:2
preparing [3] 17:10 67:13 91:8
prescribe \({ }_{[1]} 68: 1\)
prescribed [1] 67:24
present [20] 1:20 19:21 22:21 24:22 31:25 37:10 48:1 62:21 69:6 72:18 72:21 91:10 96:10,14 104:15 110:4 123:12 132:3 163:1 180:4
presented [27] 3:22 6:2
6:7 12:8 14:8 15:5 21:11 24:7,12 27:23 37:5 46:13 47:9 48:10 51:10 52:10 56:7,25 59:20 64:4 107:9 111:17 133:19 142:24 145:17 153:6 162:19
presenting [7] 19:16 64:12 107:6 120:13 132:4 175:5 180:22
presents [3] 11:7 47:19 48:2
presumably [1] 117:21
pretty [12] 5:15 15:24 25:19 26:8 38:8 53:11 65:25 77:8 78:7 98:12 134:21 148:6
previous [4] 71:18 135:10 137:1,6
previously [1] 96:1
price [3] 18:17 113:25 117:2
principal [1] 2:15
printed [2] 118:6 148:22
prints [1] 128:25
private [6] 11:9 55:11 55:14 89:13,25 95:20
problem [6] 69:21,25 85:11,15,16 109:15
problems [1] 163:24
procedural [1] 1:5
process [14] 4:15 8:6 10:23 20:15 67:4,6,22 67:23 68:2,6,13,18 122:2 174:5
processed [1] 16:9
produced [7] 42:11
75:19 120:4 121:5 145:6 146:10 172:23
product [3] 46:7 116:15 117:15
program [1] 7:13
project \({ }_{[2]} 7: 11,15\)
promise \({ }_{[1]} 23: 19\)
prompted \({ }_{[1]} 116: 4\)
property [6] 33:14 56:9
60:25 61:3 62:1 127:6
proposal [1] 5:7
propose [1] 87:5
proposed [7] 5:1,19 7:13
58:24 64:13,22 65:12
proposing [1] 6:9
provide [12] 42:1 67:17
86:4,18 87:8 88:16 96:21
121:17,17 158:14,14
170:22
provided [21] 1:9 5:1
11:4,10 16:5,24 42:7
63:3 67:15 75:18 87:8
87:13,15 88:22 89:12
91:23 94:5 110:5 142:16 171:2 179:6
provides [2] 42:20 93:25
providing [2] 18:5 88:4
province [8] 35:13 42:24
76:3 84:24 86:5 112:4 113:24 114:7
provinces [6] 51:12,15
74:15 112:8 141:24 179:4
public [2] 114:22 183:6
published [1] 11:15
pull [1] 46:18
purpose [3] 7:15 51:15 87:24
purposes [1] 87:16
put [3] 15:11 41:14
130:10
puts [1] 129:11
putting [2] 21:25 59:7
\begin{tabular}{|c|}
\hline -Q- \\
\hline \[
\begin{aligned}
& \text { Q.C }{ }_{\text {[12] } 20: 1621: 3} \text { 28:20 29:4,8 42:15 46:24 }
\end{aligned}
\] \\
\hline
\end{tabular}
questioned [2] 119:19 171:25
questioning [2] 53:12 169:17
questions [7] 4:8,14 52:15 67:1,3 73:3 75:14
quicker [1] 65:19
quite [5] 44:10 71:23 100:20 141:18 180:1
-R-
\(\mathbf{R}_{\text {[20] }}\) 20:10 23:17,25 24:1,5,6,24,25 25:4,14 52:6,6 53:17,25 54:1,2 133:16,17 146:11 147:2
rain [1] 115:5
raised [2] 49:9 57:24
raises [1] 115:24
range [3] 25:1,5 52:9
ranges [1] 45:6
rate [142] 3:8,9,18 4:6,24 5:1,3,19 6:8,12 7:13,15

7:21,22 8:9,22 10:3 15:7
19:3,4,5,6,7,8 24:15
27:15 31:15,20,23,24
34:5,7,7 40:5,8,19 41:18 41:21 45:1 48:25 49:18
50:8 51:13,17 52:9 55:10 56:2,8,11,14,15,20 57:21 58:3,7,10,23 59:1,4,4,5 59:11,14,19 60:8,10,16 64:4,9,11,12,15,18,21
65:8,11,16 69:23 73:22
76:16 79:24 86:5,10
90:20,21,24 91:12,15
92:22,25 93:20,21 94:11
94:20 95:5,12 96:8,14 96:25 101:9 102:15,21
102:22 105:3,14,17,19
106:14 107:13,17,19,23
108:2 110:11,25 111:3
113:25 114:12 115:15
124:20 125:13,14,15,24
125:25 126:3,5 127:13
127:18,24 128:1,22
129:14 141:23 142:17,21
144:17,19 165:3 173:24
175:18,23
rated [1] 6:4
rates [83] 7:1,8 8:16,20 8:24 9:5,18,21,24 10:5
10:14,17,21,24 11:7,20
12:3,18,22,23 14:4 17:20
18:18 20:6 25:16 28:15
39:21,23 40:13 41:4
48:23 49:17 52:24 53:9
55:22,24 56:7,22 58:21
59:8,14,15 61:19,20,22 61:25 62:6 64:23 67:15 67:17 68:23 69:6,16 73:15 75:6 77:3 79:24 87:6,16,20,21 88:2,6,8 88:10,12,16,21 91:8 94:2 96:5 108:5 110:4 125:22 132:3 140:16 142:11,15 153:6 175:5 177:15 178:21 183:5
rather [3] 21:15 47:25 170:12
rationale [2] 72:15 77:25 re [1] 183:4
read [1] 160:8
readily [1] 180:2
ready [1] 65:20
real [1] 38:12
really [23] \(21: 15\) 26:3
37:12 38:19 52:7,22
73:14 79:13 83:7 101:13
114:12 134:1 146:21
148:7 150:10,14,16
151:19 163:14 175:4,17
177:10 181:25
reason [4] 92:24 127:2
151:19 164:21
reasonable [9] 6:11 25:3
33:10,25 34:17,25 37:5 69:2 134:23
reasonably [1] 180:5 reasons [3] 75:25 92:21 166:8
received [3] 11:13 21:14

73:1
recent [29] 15:6 17:22
17:24 72:1 73:21 78:19
78:23 79:1 80:13,14 81:6
81:12 82:10,16 104:9,13
109:8,13,16,17 115:1
116:7 119:4 132:24
134:19 135:14 137:5,19
167:20
RECESS \(_{[1]} 66: 13\)
recognize [2] 142:6 172:23
recollection [2] 121:4 140:17
record \({ }_{[1]} 98: 4\)
red [4] 35:11 63:12,14 98:1
redid [1] 30:5
reduce [7] 33:13,16,19
59:19 127:10 152:11
174:17
reduced [3] 33:12 36:19 129:9
reduction [5] 33:20,21
112:16 127:14 174:22
refer [7] 11:3 68:20 89:6
103:1 144:12 149:14 157:19
reference [2] 43:21 156:17
referred \({ }_{[8]} 7: 20,248: 8\) 97:24 98:19 143:2 147:15 159:20
referring [17] 6:3 17:23 75:10 78:12 79:4,7 80:4 81:17 86:15 87:2 90:12 90:13,14 101:18 104:22 136:2 158:19
refers [1] 92:7
reflection [2] 19:12,17
reflects [1] 48:15
reform \({ }_{[20]} 12: 5,9\) 33:2
33:7,11 34:11 37:4,10
50:1 55:4 78:2 116:15
117:15,24 128:17,21
129:1 130:2,16 131:6
reformed [1] 32:23
reforms [30] 12:6,8,11
12:14 18:17 33:5,12,14
33:18 34:9,12,15,19,24
35:12 36:17,23 50:10
55:4 113:23 127:7,8,9
127:13,17,20,21 128:24
129:8,16
regression [16] \(8: 8,13\)
37:13 50:1 68:24 120:24
130:18 157:23 161:22
164:14,20 172:24 173:7
173:18 175:25 177:8
regressions [2] 132:15 173:2
regular [2] 179:1 181:5 regularly [1] 181:6 reiterate [2] 53:19 80:21 rejected \(_{[1]}\) 101:9 related [3] 44:16 147:14

162:10
relates [1] 179:19
relating [1] 39:16
relation [1] 121:11
released [1] 11:4
relevant \({ }_{[1]} 73: 14\)
reliability [1] 144:11
reliable [5] 57:17 81:21 81:24 179:5,8
relied \({ }_{[1]}\) 89:1
rely [1] 149:12
remember [3] 37:20
60:4 116:11
reminder [1] 56:3
repair [1] 104:1
repeat [2] 83:9 178:11
repeating [2] 34:13 179:4
report [92] 2:18,25 3:15
4:15 5:22 6:23,24 11:6,8 11:10,14 14:9 15:6,6,11 15:13 17:13,23 19:11,15 19:20,23 20:3,4 21:10
21:13,16,18,23 22:5 23:1 23:3,6 24:23 28:3,16,17 30:6 31:25 32:9,9 40:22 46:2 49:8 56:25 57:7,13 57:25 59:23 63:4 68:21 68:21,22 69:3,7 72:21
86:18 87:3,8 88:17 89:7
89:8,23 90:3,4,4,10 91:8 92:4 93:7 96:15,21
101:22 107:7 111:11,17
111:23,23 121:12 143:3 143:3 144:25 153:7
172:20 179:14,14 180:3 180:3,5,6,12,12
reported [4] 13:4 16:6 41:11 63:3
reports [26] 17:10 21:21
67:13 68:13 75:18,19
76:10 86:12,13,13,15,21
86:23 87:3,12,15 88:25
88:25 91:10 94:9 108:6
120:3 145:6 162:7 165:24 180:22
request [8] 89:2 121:16 122:5,6,25 168:17 169:6 171:10
research [1] 115:17
responded [1] 102:9
responding [1] 96:4
responds [1] 102:5
response [2] 52:15 62:12
responsive \({ }_{[16]} 22: 22\)
25:16 26:23 54:8 67:18 90:7 91:4 94:16 96:11 103:4 104:9 106:2 109:9 111:15 133:8,13
responsiveness [3] 22:16 53:21 71:3
rest [1] 167:25
restrict [2] 134:4,25
restricting [2] 132:19 138:8
result [6] 3:6 48:19 50:3

57:20 157:4 179:9
resulted [2] 11:19 31:19 results [7] 23:10 54:6
103:7 121:5 134:21 165:6 174:7
reveal [1] 139:4
review [58] 3:20 4:4,18
4:21,23,23 10:2,3,4 11:5 11:11 12:1 24:21 25:17 25:17 26:23,24 27:4,5
33:3 34:5 52:18 53:22 53:23 54:22,22,24,25 55:2,3,8 67:13,19,19 70:10,11,11 71:11 72:17 74:12 76:16 88:18,21 93:19 94:4 95:1 96:15 101:5 106:24 110:14 114:23 117:25 152:14,15 158:2 165:6,6 180:25
reviewed [3] 64:7,7 117:24
reviewing [6] 3:17 70:11
72:6 93:24 115:7 175:11
reviews [6] 4:19 5:16
71:18 95:3 152:19 177:14
right [40] 2:20 15:4 23:24
24:3 25:10,14 26:1,2
31:6,22 35:11 42:10
43:21 47:6 54:20 61:21
63:12 66:18 74:4 80:20 83:24 85:18 101:1 105:2 106:7 109:24 116:6 119:25 125:4 133:24,25 138:1 142:20 145:11 150:25 160:21 170:13
175:6 176:11 179:10
right-hand \({ }_{[1]} 15: 9\) rightly [2] 51:19 162:12
rigid [1] 70:18
risk [2] 134:5 135:9
Road [1] 183:7
role [1] 65:7
room [1] 149:7
rough [1] 24:4
roughly [1] 38:24
rounding [1] 47:19
row [4] 46:6,7 63:6,10
rows [1] 15:15
rule [1] 24:4
run [26] 18:23 19:1,2
20:7,11,13 21:17 22:2
24:8,9 70:21,24 74:10
78:5 120:19,23 122:2
125:10,11 133:15,19 135:8 150:12 163:24 164:13,15
running [4] 52:9 76:4 134:5 177:7
runs [9] 19:17,18,20,21
20:12 21:9 22:24,24 145:12
\begin{tabular}{|c|}
\hline -S- \\
\hline sample [5] 74:16 84:23 100:11 174:24 175:3 \\
\hline savings [1] 34:11 \\
\hline
\end{tabular}

Says [2] 46:6 130:13
Scotia [3] 68:12,14,18
screen [8] 35:8 47:7,11
143:12,20 158:10 169:2 169:8
scroll [3] 42:25 44:6 143:14
SD [12] 157:20,20,21,24
160:17 161:5,12,19,23
168:12,12 172:11
SD1 [1] 161:19
seasonality [1] 48:15
second [26] 5:9 12:4 16:4
20:24 28:19 33:6,15,18
34:22 35:17,24 36:2
42:11 43:4,17 50:12 55:2
83:24 90:5 102:25 117:13
125:23 137:20 165:14
168:19 182:21
section [1] 145:18
see [85] 4:1 10:8 21:10,15
25:8 26:15,20 30:16,18
35:14,22,25 36:9 39:9
40:6 41:24 43:2 44:6,13
46:19 47:11,21 52:7
62:18 64:2 72:1,4,6
77:24 79:11,14 91:21
92:13,14,19,20,22,24
93:11 98:17 104:3,15
105:4,6,11 106:19 108:23
109:18 112:14 114:3,10
114:17 115:23 116:2,17
120:24 128:1 129:6,14
132:2 135:12,15,17,21
137:9,15 138:6,10,19
143:14 146:22 153:25
154:1,10,12 155:7,25
158:10,11 159:17 162:8
167:25 169:2 179:3
181:25
seeing [15] 15:17,23 32:8
36:22 38:17 51:11,14,16
112:7,9,19 131:18 134:21
141:22 182:7
seem [2] 156:3,10
sees [1] 34:11
segment [1] 73:19
segmentations [1] 119:12
segments [1] 119:3
select \({ }_{[7]} 13: 10\) 46:14
48:5 49:25 50:8,16 74:12
selected [21] 11:8,24
24:20 44:17 45:21,22
46:6,9,12,18 47:8,11,16
47:17 48:16 54:17 68:22
75:6 111:10 133:11 180:14
selecting [6] 9:24 10:5
10:14,17 49:14 131:15
selection [21] 13:1 23:1
24:19,22 46:7,10 48:21
55:17,19 67:4,6,22 68:12 94:20,23 96:13 97:10 132:12 133:11,14,20
selections [2] 47:13 50:17
selects [1] 13:8

Sense [3] 77:11 99:3 \(\quad\) Six [30] 11:1,3 16:16,21
170:11
sensitive \({ }_{[5]} 172: 25\)
173:8,18 175:25 176:2
sent [1] 88:17
sentence [1] 103:1
separate [9] 9:3 125:2
125:14,22,24 126:21
132:23 134:7 139:4
separately [3] 11:9 60:24 142:11
separates [1] 125:19
set [5] 13:8,10 70:10
73:15 146:20
setting [1] \(87: 16\)
settle [4] 40:1 81:6 83:14 99:14
settled [4] 13:7 41:12 81:13 82:18
seven [6] 56:18 58:7,9 83:20 118:23 124:21
several [5] 143:4 144:4
144:12,20 157:19
severe [1] 114:9
severity [26] 7:25 8:2
18:24 19:4,7 20:9 24:12
37:21 38:18 52:10 55:8
55:13,14 79:15,18 80:24
90:20 98:10 101:9,14
112:1 113:2,11 114:18 142:9,17
sheet [2] 21:12,22
shift [5] 132:22,25 162:1
165:21 167:11
shifted [1] \(34: 16\)
short [1] 32:15
shorter [2] 50:14 82:6
show [2] 19:19 45:18
showed [2] 139:2 145:11
showing [4] 46:3 108:8 165:20 171:2
shows [2] 14:13 45:19
shy [1] 6:8
side [6] 15:9,10, 12,12 181:8,8
signal [5] 97:17 99:21,23 100:9,24
signals [1] 112:12
significant [6] 99:2
100:20 116:23 146:14,24 149:10
significantly [1] 77:5
similar [5] 68:11 98:12
98:13 147:19 161:25
similarly [2] 16:18 30:16
simple [2] 159:11 161:25
simpler [1] 103:24
simply [3] 7:8 107:23
113:13
sit \({ }_{[1]} 65: 13\)
situation [3] 77:16
166:14 167:1
situations [1] 164:5
\begin{tabular}{|c} 
Six [30] 11:1,3 \\
17:16:16,21 \\
17:11 \\
19:12 \\
20:8 \\
\(53: 24\)
\end{tabular}
91:8,10,21 93:6,19,25
94:6,9 95:3,15,24 96:1
108:6,7 110:24 111:3
124:20 132:22 162:1
167:19 176:8 180:4
six-month [4] 23:3 46:4 94:12 95:8
sizable [2] 12:9 33:7
size [8] 7:24 36:11 37:17
79:12 82:3 84:23 98:7 99:6
sizes [1] 100:11
slice [2] 71:24 125:19
slightly [3] 164:8 171:21 181:14
small \({ }_{[14]} 5: 1138: 12,14\)
38:15 39:1,10 49:11 60:6
81:9 84:23 90:8 98:24
99:8 103:5
smaller [2] 100:11,19
smooth [3] 78:4 156:18 165:5
smoothed [1] 177:24
snow [1] 116:11
someone [1] 83:16
sometimes [6] 4:13
70:22 76:1 95:16 151:18 181:13
sophisticated [2] 18:11 73:25
sorry [24] 8:22 16:6 20:4
20:20 21:6 34:20 42:17
54:15 63:7 86:10,12 88:6
102:2,8 108:6,17 136:1
143:12,17 144:2 159:7,9
170:9 178:11
sort [7] 28:15 112:18
126:13 148:14 150:20 155:11 164:4
sorts [1] 83:17
sound [1] 183:9
sounds [2] 84:22 96:2
spanning [1] 68:25
speak [3] 27:10 114:22
179:24
speaking [3] 27:25 75:13
92:12
specific [3] 71:14 113:7 153:19
specifically [5] 93:17
123:3 124:2 150:7 179:24
specifics [1] 144:25
spent [1] 74:9
split [1] 50:9
splitting [1] 50:4
spoke [3] 26:10 90:18 151:2
square [14] 23:25 24:1,5
24:6,24,25 25:14 52:6,6
53:25 54:1,2 133:16
146:11
squared \({ }_{[2]}\) 23:17 53:17
squares [4] 20:10 25:4

\section*{133:17 147:2}

St [2] 183:7,10
stability [11] 16:2,4 18:2
18:3,4 22:16 53:22 71:4
94:25 144:10 180:18
stable [29] 14:3 17:6
22:22 23:2 25:6,17 26:7
26:23 27:4 54:8 67:18
77:23 78:6,10 83:6,7
90:10 94:16 96:14 97:9
103:7 111:6,23 124:21
133:8,13 157:4 175:22
180:5
Stamp [14] 20:16 21:3
28:20 29:4,8 42:15 46:24
65:20 66:7,15,17 89:22
172:6,15
stand [1] 170:13
standard \({ }_{[15]}\) 57:6,9,15
57:24 120:10,14 146:9
154:20,25 157:11,14,17
178:23,25 179:3
standards [4] 58:3,8 101:8 178:19
start [6] 6:25 13:17 67:2 116:1 122:13 182:21
started \({ }_{[7]} 21: 2151: 13\)
118:20 126:23 139:5,24
141:6
starting [8] 35:16,24
36:6 51:17 72:16 112:11
128:3 129:9
starts [1] 139:13
state [5] 2:12 67:5 68:22 90:5 143:3
statement \({ }_{[1]} 70: 18\)
statistic [8] 146:12,17
146:22 147:9,21 149:1,7
149:14
statistical \({ }_{[8]} 11: 2\) 42:4
143:8 144:8 150:1 152:4
156:13,16
statistically [1] 26:21
statistics [7] 97:17
114:16 120:24 130:14,18
131:11 149:23
stats [3] 113:22 146:9
148:15
stayed [1] 33:23
step [2] 4:3 111:21
steps [1] 4:5
stick [1] 71:19
still \({ }_{[4]} 83: 21 \quad 163: 13\)
168:4,12
stopped \({ }_{[2]}\) 164:25 165:25
storm [1] 116:12
strike [5] 22:15 53:20
54:8 71:2 94:17
striking [1] 111:14
struggled \({ }_{[2]}\) 52:15
101:5
subject [8] 17:25 79:1
81:4,7,12 82:17 83:22
84:13
subsequent [2] 165:23 167:3
subset [1] 105:10
such [10] 5:5,6 10:2 68:11
109:22 114:14 115:19,19
124:7 131:16
suddenly [2] 164:7 165:11
suffer [1] 131:17
sufficient [5] 178:8,13 178:17,21,24
sufficiently [2] 90:10 103:7
suggest [3] 64:25 84:25 164:5
suggested [1] 131:10
suggesting [1] 65:10
suggestion [1] 64:14
summaries [1] 29:11
summarize [4] 5:18
55:22 59:23,25
summarized [1] 29:3
summary [9] 19:15,20
21:10,12 23:16 28:11
145:12,18 157:22
superior [7] 51:23 52:3
52:11,22 53:4,12,14
support [3] 57:23 58:23 156:13
supported \({ }_{[2]}\) 4:25 59:3
surprised [1] 112:21
surrounding [1] 38:4 sustainable [2] 64:19 65:11
sustained [2] 33:21 34:14
-T-
\(\mathbf{t}_{\text {[14] }}\) 33:25 101:6 146:12
146:17,21 147:9,20 148:1 148:4,9,19,25 149:7,14
T-Tests [1] 52:17
table [1] 6:2
tail [3] 134:8 135:22 136:25
take-away [1] 26:6
takes [3] 74:11 83:13 133:4
taking [13] 22:24 48:1
53:7,9 61:22 65:24 66:18
111:1 127:3 132:15
156:20 157:3 175:7
taxi \({ }^{[26]}\) 4:22,23 5:10
7:10 8:19 9:1,2,5,21 60:5
60:13,17,20 61:6,16,23
62:4,6,9,21 64:5,9 79:20 126:6 142:22 183:4
taxis [6] 2:20 9:20 34:8
57:20 61:9 63:16
technical [1] 149:2
technology [2] 112:11 142:4
telling [5] 72:10 110:8 111:12 114:3 182:3
\begin{tabular}{|r}
\hline tells [9] 38:23 104:16 \\
105:4,6 173:23 174:2
\end{tabular} 176:9,10,12
ten [75] 20:7 22:23 29:25 30:9,16 31:2 68:25 69:4 69:7,17,22 70:1,14 71:6
71:16 72:3,11,16 75:7
75:20 77:6 83:20 85:11
86:6,7 89:1,18 96:6
102:18,22 104:14 105:10
105:15,20,24 107:13,17
108:24 110:6 112:18
118:22 120:5 131:16,20
131:23 132:21,21 134:12
136:24 137:13 138:8,13
141:20 142:3 152:20,21
152:25 153:12 161:5,18
161:22,25 164:8,13
167:12 168:22 170:2
173:2 174:6,20 175:3,12 177:1,8 180:13
ten-day [1] 132:19
ten-year [35] 12:4 24:8 24:9,16,17 26:24 27:25 71:10 90:11 103:8 104:25 105:5 106:9 107:3,15 108:12 111:11 117:20
132:23 133:9 134:4,9,13
135:1,8,23 136:9 157:24 159:12 164:6 165:13,15 167:2,3,8
tend [3] 100:10,11 147:20
term [3] 148:24 149:22 149:25
terminology [2] 95:12 104:19
terms [16] 52:5,10 68:5 78:25 97:16,21 103:16 113:1 131:12 146:6 149:4 150:1 156:9 178:20 179:6 181:2
test [5] 148:9,9,19 174:23 180:1
tested [1] 129:23
testimony [2] 2:25 50:20
testing [4] 4:11 40:6 153:10 155:11
tests [6] 101:7 153:19 154:15,20,25 155:2
thank [20] 2:7,7,18 3:12 14:23 17:9 21:4 29:19 42:18 46:23 54:15 57:4 66:10,25 89:6,18 90:1 122:10 161:12 182:16
that'll \({ }_{[1]} 132: 22\)
thee [1] 81:19
themselves [3] 132:3 166:11,25
there'd [2] 149:25 181:24
there'll \({ }_{[1]} 155: 5\)
there've [1] 78:2
therefore \({ }_{[2]} 90: 10\) 103:8
they've [11] 33:14,17 36:15,16 46:11 47:8 48:16 55:18 57:18 127:11 129:8
thin [3] 74:18 179:5 180:20
thinking [1] 27:16
third [5] 6:5 61:3 63:1 125:1 143:15
third-party [1] 55:17
thought \({ }_{[9]}\) 6:11 16:19
16:23 50:21 61:21 64:10 72:19 115:4 164:23
three [9] 6:3,4,6,21 16:20 19:8 38:3 47:19 160:16
through [21] 2:11 3:3,13 3:15 4:5 23:20 35:21 41:1 47:18,20 54:16 74:9 98:18 116:8 118:5 157:20 160:15 170:1,4 172:11 181:23
thumb [1] 24:5
timeframe [2] 114:8 116:16
times [3] 148:16 161:19 174:22
timing [1] 65:25
tips \({ }_{[1]}^{178: 5}\)
today [14] 1:11 2:8 6:20
41:11 73:14 79:10 80:21 90:19 91:15 97:24 99:16 152:9 162:5,19
together [5] 41:9 61:3 61:11 62:2,3
tomorrow [2] 182:17,19
too [7] 18:15,15 40:2
41:20,21 81:21,23
took [2] 47:22 65:1
tool \({ }_{[2]} 23: 23,25\)
top [7] 43:12 47:7 61:24
62:24 70:23 77:14 125:12
Torbay [1] 183:7
total \({ }_{[1]} 173: 5\)
touch [1] 6:20
tough [1] 84:11
tow [3] 104:1,5 109:14
TPL [8] 6:13 61:4 62:3,4 62:8,9,24,25
track [1] 21:1
transcribed [1] 183:8
transcript \({ }_{[1]}\) 183:3
transfer [2] 3:5 6:17
treatment \({ }_{[2]}\) 26:12 32:23
trend [244] 7:1,8,15 8:16 8:20,23 9:4,18,20,24 10:5,14, 17,21,24 11:7 11:20 12:3,18,22,23 14:4 15:6 17:10,20 18:7,10 19:2,3,4,5,6,7,8 20:4,6 20:12 21:9 22:2 23:23 24:15,22 25:2,16 27:14 28:15,17 30:1,6,24 31:15 31:22 33:24 39:21,23 40:5,7,13,19 41:3,8,15 41:18,21 44:22 45:1 48:23,25 49:17 50:8,22 51:6 52:8,21,24 53:9,16 53:23 55:10,22,23 56:2

56:7,8,10,22 61:19,20
61:22,25 62:5 64:23 67:4
67:6,15,17,22 68:12,13
68:23 69:6,16,22 73:22
74:7,25 75:6,19 76:14
76:18,18,20 77:3,17,19
77:21 78:5,6 79:24 81:3
81:19,20 86:15,21,23
87:6,21 88:2,8,10,12,16
88:21 90:24 91:3,7,12
91:15 92:1,7 93:20,21
94:2,11,20 95:5,7,12,24
95:25 96:4,8,14,25 97:2
101:9 102:15,21,22 105:3
105:14,17,19 106:10,14
107:3,13,17,19,22 108:2
108:5 110:4,10,25 111:3
115:1,6 118:17 119:10
119:15,23 120:11 121:6
121:21 123:4,10,12 124:3
124:5,7,8 125:13,13,14
125:22,24,25 126:2,5,21
127:12,18,24 128:1
129:14 130:3 132:3
133:14 134:8 135:6,10
135:15,22 136:25 137:6
138:7 139:4,9,13 140:16
141:20 142:7,8,11,15,16
142:21,23 144:17,19
147:10 149:9 151:7 153:6
162:25 165:3 167:8
173:24 175:5,18,23 177:15 179:9
trending [1] 127:15
trends [25] 7:5 54:17
74:17,21 78:8 81:19
90:13 96:3 104:22,24
106:3 108:12,20 111:12
111:12 124:9,18 126:9
143:6 144:5 146:7 172:23 178:9,14,21
tried [3] 32:10 165:24 166:21
truck [1] 104:6
trucks [4] 9:1 104:1,1 109:15
true [5] 151:24 157:8,11 157:14 183:2
truly [1] 96:10
try [29] 7:17 13:4 17:16 17:18 22:21 26:19 27:4 72:6 91:23 93:17,20 94:15 97:9 104:7 106:12 111:9,13,21 113:20 114:17 150:12 156:18 165:5 166:2 171:10 177:17 179:20 180:11,21
trying [74] 7:8,11,22 8:5 21:1,8 22:15 23:23 25:11 25:15 26:22 27:12,20 32:6 37:9,22 39:3,5 51:8 51:10 53:16,24 54:7 67:17 71:2 72:4 73:15 75:13 79:20 81:3 84:19 90:17,19,23 91:1,7,9 92:3,9 95:10,13 96:6,10 98:7 99:9,12,13,17 101:12 102:17 104:19 105:18 107:23 108:22
109:1,5,12 115:16 121:18 123:21 131:2 133:7

144:16,21 148:1,10 155:7 162:4,8 165:18 180:2,4 180:9,16
tune [1] 111:3 tuning [1] 93:9
turn [2] 1:13 65:20 turnabout [1] 34:10 twelve [1] 126:24 twenty-odd [1] 99:4 twice [2] 86:17 87:4 twice-yearly [1] 89:23
two [83] 5:14 12:15 15:5 19:7 25:9 26:3,25,25
28:15,15 34:19 38:2 40:5 80:20 92:18 101:20 120:6 122:24 124:8,18 125:19 125:22 131:25 136:10,12 136:19 146:12,23 150:4 152:10,10,25,25 153:11 153:12,22,22 154:4,4 155:18,18 156:12,25 157:1,4,5 158:25 159:1 160:8,17 161:6,18 162:7 163:19,20 164:3,3 165:22 167:9,9 168:21,21 172:16 173:1,3,4,8,19 174:5,6 175:3 176:1,3,6 177:20 179:16,17 181:7,8,10,11 182:13,13
two-week [1] 88:19
type [10] 79:6 80:13,14
82:22,24 83:24 94:12
95:5 124:5 129:25
typed [1] 51:18
types [1] 38:23
typical [2] 104:10 153:4
typically [9] 4:8 24:1
75:24 110:14 146:22
152:24 176:18,19 181:14
typing [1] 51:18
typo [1] 51:9

\section*{-U-}
ultimate [3] 42:21 63:5 63:11
ultimately [6] 13:5,6
41:12,14 60:18 62:22
um-hm [17] 87:13 93:6 100:15 103:11 117:18 118:10 119:7 120:8 126:18 133:2 135:4 136:22 137:3 147:12 150:6 158:4 160:11
uncertain [2] 31:4 134:2 uncertainty [18] 5:13
8:17 9:18 52:23 59:24
59:25 60:7,11 61:12,18
61:24 62:7,9 63:18,21
71:2 132:10 175:20
under [4] 6:13 46:9 131:25 172:20
underlying [4] 53:8 143:5 144:5 146:6
understand \({ }_{[30]}^{1: 9,21}\)
4:9,10 5:4 51:20 68:10 69:2 73:6 74:4,12 76:15

77:25 78:17 79:21 84:18 86:17 91:1 93:13 96:7 102:2 104:19 108:17 125:20 129:24 158:1 163:4 166:8 167:18 181:3
understood [2] 51:2 104:20
undertaking [2] 89:11 170:22
undertakings [1] 1:8 underwriting [1] 65:3 unemployment [2] 18:18 113:24

\section*{Unfortunately [1]} 151:24
uninsured [3] 6:6,14 55:16
unique [2] 5:8,15
unless [1] 177:11
Unlimited [1] 183:13
unreasonable [1] 34:3
unstable [2] 17:6,24 unusual [4] 100:12 164:4 167:24 168:1
unusually [1] 115:3
up [51] 13:10 14:20 15:22 15:25,25 19:23 26:17,17 36:4,10,14,25 37:9,9 38:3 46:15,17,18,19 48:6 54:12 59:22 62:11 74:21 79:13 85:20 94:25 95:4 97:23 104:11,12 106:16 106:18 111:5 115:18 118:6 124:19 125:19 127:8 128:8 133:17 139:20 155:21 162:14 164:4 166:12 167:11,12 174:10 176:3 182:22
updated [1] 123:24
updating [1] 110:25
ups [1] 98:17
used [40] 4:2 7:6 8:24,24 9:4,10 13:20 15:7 21:16 21:18 31:11 32:2,13,14 48:7,11 49:15,21,22,24 53:8,13 54:23,24 55:16 57:8 58:8 61:14 71:18 78:15 79:24 88:7 95:12 97:17 118:14 128:15 149:23 166:23 179:2 180:19
useful [4] 21:24 22:4,7 149:1
uses [1] 60:20
using [26] 9:16,20 13:17
17:20 39:20 47:8,13 50:8 58:18 60:25 61:6 69:4,7 69:21 77:6 79:5 80:10 94:21 128:5,14 129:15 132:6 148:3 165:16,25 180:13
usually [1] 182:21
Utilities [1] 183:6
\(\frac{-V-}{\text { vague }_{[1]} 140: 17}\)
\begin{tabular}{|c|}
\hline \multirow[t]{13}{*}{```
valid [3] 27:24 70:5
    165:22
value [24] 30:7,8,13,23
    55:23 76:22 110:13
    146:20,21 147:14,20,24
    148:1,1,5,5,21 149:2,8
    149:15,19 167:6,10
    175:16
values [19] 26:19 31:11
    32:18 110:5,5,6 124:23
    124:25 137:14,15 148:8
    159:18 160:13 162:20
    163:6 165:10,16 166:10
    166:11
```} \\
\hline \\
\hline
\end{tabular}

Vancouver [2] 115:4 151:3
vans [1] 8:25
variety [2] 75:25 175:8
various [7] 20:10 38:5
47:12 68:23 133:9 146:5 179:13
vary [1] 45:7
vehicle [2] 43:7 45:4
vehicles [1] 142:4
versions [4] 20:11 74:10 120:19,23
versus [2] 99:16 104:14
VICE [3] 170:10,19 171:23
vie [1] 103:17
view [4] 33:9 41:24 59:1 133:4
views [1] 178:23
visual \({ }_{[2]}\) 15:12 170:23
visualize [1] 171:6
volatile \({ }_{[20]}\) 5:12 15:24
16:3 26:15 31:4 36:10
60:6 74:14 78:20,24 79:2
80:15 81:21,23 133:23
134:1 147:1 155:19 179:5 182:2
volatility [35] 14:14 17:1 17:3,18 71:1 79:6,6,14
80:3,6,9,25 81:8,17 82:2
82:5,19,22,24 83:11,25
84:3,5,20,22,24 85:2,10
85:14,15 90:9 103:6
164:17 173:14 177:18
volume [1] 60:6
voluminous [1] 78:7
\begin{tabular}{l}
\hline \multicolumn{1}{c}{-W- } \\
\hline wait \({ }_{[1]} 72: 24\) \\
waiting [1] 104:7 \\
walk \(_{\text {[2] }} 3: 15\) 35:21 \\
ways \(^{[10]}\) 65:8,14 70:22 \\
118:24,24 125:10 143:5 \\
144:4,12 152:2 \\
weather [3] 18:19 78:3 \\
116:2 \\
website [1] 11:15 \\
weight [5] 57:19 61:5,10 \\
62:3 180:16 \\
weighted [2] 47:14 48:1 \\
WHALEN [3] \(170: 10\)
\end{tabular}

170:19 171:23
whiplash [4] 37:24 38:2
99:14,15
whole [3] 35:18 64:24 148:20
windows [1] 112:13 winter [1] 114:9
within [5] 15:7 69:12
116:15 123:14 155:7
without [9] 40:8 44:14 57:23 120:18 143:7 144:6 152:3 153:15 164:14
witness [1] 172:2
wonder [3] 62:17 67:4 115:24
wondering [5] 75:17
117:3 124:1 152:5 175:2
word \({ }^{[2]}\) 52:3 144:19
worded [1] 162:16
words [1] 109:12
worked [1] 65:25
write [1] 180:23
written [1] 21:10
wrong [3] 72:11 78:18 143:17
Wyman \(_{[11]} 1: 21\) 2:16
9:8 12:2 13:19 31:11
40:25 49:22 50:15,21
56:23
Wyman's [5] 18:7 26:12 51:23 53:3 68:22
\(\overline{\text {-X- }}\)
\(\mathbf{X}_{[2]}^{117: 12,12}\)
XL [1] 179:9
\(\frac{\mathbf{- Y}-}{\left.\frac{\text { Y's }_{[3]} 159: 4,9,10}{\text { year }} 169\right] 4 \cdot 22,246: 24}\)
year [169] 4:22,24 6:24 6:25 15:14,14,19,20 16:3 16:3,6,10,12,16,21,25 17:1,2,2 22:24 27:15,15 27:22,22 30:1,9,17,19 30:20 34:8 36:4,25 37:7 37:8,17,18,23,24 38:3,7 38:7,9,10,12,13,14 39:1 39:2,4,5,6,6,10,10 40:2 40:2,16,16 42:22,25 45:7 45:7 50:7 54:17,18 55:5 55:16 56:1,9,13,15,16 58:9 63:2,9,15,16,17,19 63:19 64:6,11,15 65:9,9 65:11 70:16 74:20 80:22 80:23,24 81:10 82:2 83:6 83:6,8,8,10,11,12 84:6,6 84:6 86:17 87:4,5 98:25 98:25 99:11,15,15 100:17 100:18,19 101:8 109:19 110:7 118:17 119:17 121:6,18,19,21 122:13 123:4,9,24,24 124:9,9 125:8,12 126:12 129:3 135:15,21,22 136:1,1,24 136:24 137:9,19,20 152:20,21,25 153:3,12 159:23,24 160:22 161:5

161:18,22,25 163:7 164:9
168:22,23 172:25 173:2 174:6,16 180:13,13 181:6 181:22,22
year's [12] 17:13 40:17 40:19 54:14,24,25 55:2 55:3,7,18 63:4,7
years [189] 8:11 18:13
20:8,8 31:2 35:15 49:24
50:5,12,15,16,17 60:15
68:25 69:4,7,7,10,13,15
69:17,17,22 70:2,4,5,14
70:15,20,22 71:6,16,23
71:25,25 72:1,3,3,11,13
72:17,17 73:5,6,10,12
73:19,20,20,21 74:1,1,1
74:2 75:8,20,20,24 77:6
77:6,9,18,19 79:5 80:11
80:18 81:5,12,16 82:23
82:25 83:20,20,20 85:1
85:11 86:6,7,19 89:1,2
89:19 91:17 96:6,6 99:4
99:16 101:2,2,2,3 102:18
102:21,22 104:2,14,14
105:10,10,14,15,15,20
105:20,24,25 107:11,13
107:17,19 108:6,24 109:8
112:18 117:23 118:14,16
118:21,22,22,23,23 119:4
119:4,5 120:4,5 122:1
122:21 123:6 124:2,20
124:21,22 126:4,16,22
126:24,25 127:3 128:1,5
128:14,15 129:13,15
131:17,20,23,24 132:21
132:21,24 134:6,12,19
135:7 136:1,10,12,13,15
136:20,24 137:6,13 138:8
138:13,19,22,24 139:2,3
139:6 140:8,10,21 141:20
142:4 153:1,6 164:13
167:12 176:8,8 177:2,2
177:2,8
yellow [3] 79:11 97:25
159:17
yo-yo [1] 85:21
yourself [5] 11:21 58:15
132:19 134:4 135:1```

