	Page
1	November 5, 2014
2	$(9: 41$ a.m.)
3	CHAIRMAN:
4	Q. Well, good morning, everybody. I'll call this
5	hearing to order. This is a public hearing
6	into an Application by Facility Association
7	under the Automobile Insurance Act for new
8	rates for its taxi and limousine class of
9	business. My name is Andy Wells, I'm
10	Chairman. On my left is our Vice-Chairman,
11	and on my right are our two other
12	commissioners, Vice-Chairman--I'm having a
13	senior's moment. I am. I'm losing my mind.
14	COMMISSIONER WHALEN:
15	Q. Darlene.
16	CHAIRMAN:
17	Q. Darlene Whalen. What's wrong with me? And
18	Commissioners Oxford and Newman. Jacqui Glynn
19	is Board counsel and she'll be speaking
20	momentarily. Cheryl Blundon is our Director
21	of Corporate Services and Board Secretary and
22	she is--oh, she is there, okay, and we have
23	with us also, Ryan Oake, our Regulatory
24	Analyst, and Robert Byrne is at the back, our
25	Director of Regulatory and Advisory Services,

November 5, 2014

```
(9:41 a.m.)
```

Q. Well, good morning, everybody. I'll call this hearing to order. This is a public hearing into an Application by Facility Association under the Automobile Insurance Act for new rates for its taxi and limousine class of business. My name is Andy Wells, I'm Chairman. On my left is our Vice-Chairman, and on my right are our two other commissioners, Vice-Chairman--I'm having a senior's moment. I am. I'm losing my mind.
Q. Darlene.
Q. Darlene Whalen. What's wrong with me? And Commissioners Oxford and Newman. Jacqui Glynn is Board counsel and she'll be speaking momentarily. Cheryl Blundon is our Director of Corporate Services and Board Secretary and she is--oh, she is there, okay, and we have with us also, Ryan Oake, our Regulatory Director of Regulatory and Advisory Services,

Page 2

1 and we have our Board actuary Paula Elliott with Oliver Wyman. I'll now ask the parties to introduce themselves, and I hope they
haven't forgotten their names. So, who goes to introduce themselves, and I hope they
haven't forgotten their names. So, who goes first? I guess the Applicant.
6 STAMP, Q.C.:
Q. Good morning, Mr. Chairman, Commissioners, I'm Kevin Stamp and with me is Jennifer Newbury. We're both with the law firm Martin, Whalen, Hennebury, Stamp, and sitting behind me are Shawn Doherty of Facility Association, and Cosimo Pantaleo, he's with Ernst \& Young. Both Mr. Doherty and Mr. Pantaleo have significant experience in the insurance industry. Each are fellows of the--or each is a fellow of the Canadian Institute of
Q. Good morning, Mr. Chairman. I'm the Consumer Advocate in these proceedings, Tom Johnson and with me is my colleague Tom Williams, a lawyer with whom I practise. Also appearing with me
this morning is Mr. William or Bill Vulcan, (phonetic)--is an actuary from Millimans who has been providing guidance and helping-assisting us in our understanding of the technical matters that are inherent in these types of applications.

CHAIRMAN:

Q. Okay. Well, we'll be having our transcripts done by Discoveries Unlimited, and they will be available of curse as soon as we possibly came make them available. Andrew Davis is the Board's Computer and Regulatory Support Technician, and of course he will be assisting us--he's over there on the right--my right, your left--with our electronic filing. Now our sitting hours I think we've decided are going to be 9:00 to 11:00, although we're starting somewhat late today, and 11:30 to 11:30 with a $30-$ minute break. I think there's going to be some changes for tomorrow, Mr. Stamp, to accommodate you and I think our solicitor Jacqui Glynn will make reference to that now shortly. Actually, she'll do it right now because I'm going to turn it over to him. I think I've finished my opening
remarks.
MS. GLYNN:
Q. Thank you, Mr. Chairperson. Good morning to the panel and everybody else who has joined us here this morning. On March 6th, 2014, the Board received a rate application from Facility Association for it's taxi and limousine class of business. Notice of this application was published in newspapers throughout the province starting on March 26th, 2014. On July 7th, 2014, notice that the application would proceed via way of an oral hearing, a public hearing, was published and on October 9th, 2014, notice of today's hearing date was published. The Board received notice that the Consumer Advocate had been appointed on April 23rd, 2014. We have received two requests to make an oral presentation. Todd Edmunds from Star Taxi and Doug McCarthy from the former Co-op Taxi. These presentations will immediately follow any opening statements from the Applicant and the Consumer Advocate. These will not be sworn witnesses and there will no crossexamination of these witnesses. The one

Q. B'y, don't say that around here, you're liable to get arrested.
MR. MCCARTHY:
Q. My name is Douglas McCarthy. Until Sunday evening, I was the General Manager and Treasurer for Co-op Taxi here in St. John's, a company that was in business for 25 years. Unfortunately, we had to close our doors, and having said that, I'm still a taxi operator, I'm still representing the majority of the industry here within the City of St. John's as their spokesperson. The application for Facility Association Limousine and Taxi Association rates. The proposed rate increase by Facility Association for the taxi and limousine industry here in the province, if approved will have a drastic impact on the overall industry, as well as the entire economy of the province. In August of 2013, this Commission approved a rate increase of 50 percent for third liability, a 100 percent increase in accident benefits and a 100 increase in the uninsured automobile. This increase came as a complete shock to the industry, as we had no notification of the
application for a rate increase. We only became aware of the rate increase upon renewal of our insurance premium. To many, this increase was enough to force some marginal operators to retire from the industry. This year once again Facility has requested an additional increase of 50 percent for PLPD, a 294.3 percent increase in the accident benefits and a whopping increase of 329. 3 percent for the uninsured automobile. I had many objections to the proposed increase for various, different categories. PLPD 50 percent, once again, on top of the 50 percent from the previous increase, will total approximately 125 percent in just one year from the rates effective July 31st, 2013. This I find hard to believe, that in two years the cost of settling a claim has increased by 125 percent. To me, this would indicate that what cost $\$ 1,000.00$ to repair in July, 2013 now costs $\$ 2,250.00$, or that a soft-tissue injury of the same $\$ 1000.00$ now costs $\$ 2,250.00$. What is driving up these costs? Certainly not inflation. Perhaps in their haste to settle claims, Facility is paying out
whatever the claimant is asking without doing any investigative work, as people have the attitude, well, it's only a taxi company and they have lots of insurance. What they fail to realize is that's it's the consumer of our service, that the more it costs the owners to operate, the more the consumer will have to pay. Accident benefits, 294.3 percent, this increase is totally unbelievable. You cannot justify an increase of over 300 percent in just one year. Once again, oh, it's only the taxi industry. It would seem like this is the underlying train of thought: hit them as hard as you can, and hit them again. Uninsured automobile, 429.3 percent in just over one year. I, as an operator, am required by law to carry adequate insurance to operate my vehicle, as is every other taxi in this province. The minute I cancel my policy, the insurance company must notify City Hall that my policy has been cancelled. City Hall will then inform the stand operator, who must withdraw that vehicle from service until such time it's proved to the City that the stand operator once again is covered by insurance.

However, if you listen to any local radio or TV channel, there is rarely a day goes by that someone would be arrested for driving with no insurance, registration or license, then only to find out the outstanding finds total tens of thousand of dollars. This has nothing to do with the taxi industry. We are insured. This is an enforcement issue. If the insurance companies are having a problem with uninsured drivers, then they should be going after the government and have them do the job that they are supposed to be doing. If I sell my vehicle to someone, then it should be my responsibility to remove the plate from the vehicle after I--because after all, I paid for the plate, not the car. The plate is mine, therefore it should be my responsibility-therefore it should be the responsibility of the new owner to acquire the appropriate plate for the vehicle. In this manner, the Province will be able to control who can operate a vehicle on the road, also make it the responsibility of the insurance industry to notify a Motor Vehicle branch if someone cancels their insurance and fails to insure

	with another company, seize the vehicle, if
2	cessary, until such time as the vehicle is
3	properly insured. Our industry should not be
4	the scapegoat for the Province and insurance
5	industry not doing their jobs correctly. The
6	taxi industry is a very volatile industry. We
7	are subject to the whims of every gas company,
8	as are all consumers, however, we use more
9	fuel than the average driver will in five
10	years. We already pay higher insurance rates
11	than the average driver. As with all
12	consumers, we are faced with the same increase
13	in the consumer index as they. Two years ago,
14	I needed to make $\$ 78.00$ every day just to
15	cover my expenses. Then last year, I had to
16	make \$98.00 every day just to cover my costs.
17	With the proposed increase, my insurance rate
18	will cost me nearly \$5000.00 a year. This
19	will drive up my daily requirement to nearly
20	\$125.00 a day before I put five cents in my
21	pocket. At this rate, I will not put a second
22	vehicle on the road. Yes, I realize that we
23	are a high-risk business. Even Stats Canada
24	says that as a taxi operator, we are ranked in
25	the top five high-risk stress occupations.

Page 14
However, my insurance rates should be based on me, the individual, and not what I do for a living. If I drive for 25 years without an accident or a claim, I will still be classified as high risk because what I do and not who I am. Is this not another form of discrimination? If this increase is improved, it will have a drastic impact on the entire of the economy of the province, for it will drive those marginal operators out of business, thereby reducing the amount of vehicles available to provide service to the public. In some areas, we are the only source of public transportation. This increase would, if approved, force many of these operators out of business. It will have an impact on other areas of the economy as well. With fewer vehicles available for use, it will have a negative impact on the entertainment industry, as more individuals will opt not to go out for the evening, or it will have an even greater impact on public, what with the possibility of even more impaired drivers on the road putting the public at risk. Yes, I realize that as things increase in cost, costs have to be
passed on. However, Facility has failed to cover their losses in the past and now they seem to want to play catch up at our expense. If it is because of a management issue, then Facility should get their own house in order before they burden the industry with rates that may force many of us from the business and have an overall impact on the provincial economy. Thank you very much.

```
CHAIRMAN:
```

Q. Thank you, sir. Do we have a second presenter?

```
MS. GLYNN:
```

Q. Yes, we do. Todd Edmunds from Star Taxi.
MR. EDMUNDS:
Q. Good morning. My name is Todd Edmunds, and I represent Star Taxi in Corner Brook, Newfoundland. I would like to take a moment to encourage the Board to take a good look at

CHAIRMAN:

Q. Just one second. Can everybody hear him at
the back? Perhaps, sir, you could just speak
a little bit louder so everybody can hear you
in the room?

Page 16 MR. EDMUNDS:
Q. I would like to encourage the Board to take a look at the Facilities application before making a decision. Last year, the increase drove the costs for my cars from $\$ 1206.00$ per car to $\$ 3,021.00$ per car. In that case, I had to remove seven cars from my fleet and three independent cars also removed their cars. That makes it harder for my business to operate. Another increase would even be greater to our business because there are talks that other independent drivers are removing their cars. One of the biggest problems that I have with the increases and that is when we make a claim, we can't get no one to return a phone call or an adjuster to look at the claim. They just tell me that it's cheaper for them to pay the claim off then investigate. I wonder if they would do more investigations on the claims and that may keep their costs down. I'm not a very good speaker.

CHAIRMAN:

Q. Oh, that's fine. Take your time, sir.

MR. EDMUNDS:

Page 17	Page 19
1 Q. First time ever, right?	1 Does it matter?
2 CHAIRMAN:	2 STAMP, Q.C.
3 Q. You're doing fine.	3 Q. I'll let Mr. Doherty answer that when he gets
4 (10:00 a.m.)	4 to the mic. Mr. Doherty, the choice is yours
5 MS. GLYNN:	5 as to whether you will be swearing on the
6 Q. You're doing fantastic.	6 Bible or take a solemn declaration. Do you
7 MR. EDMUNDS:	7 have any preference?
8 Q. In my closing remarks, our expenses keeps	8 MR. DOHERTY:
9 going up and we got no way to get our money	9 Q. I'll take a solemn declaration.
10 back, so I don't know, it's probably going to	10 MR. SHAWN DOHERTY (AFFIRMED), EXAMINATION-IN-CHIEF BY
11 be--put us out of business, too, you know?	11 KEVIN STAMP, Q.C.
12 CHAIRMAN:	12 STAMP, Q.C.:
13 Q. So you said \$1,200.00 to \$3,000.00 in one	13 Q. Mr. Chairman, Commissioners, there's been
14 year?	14 discussion before today on the issue of Mr.
15 MR. EDMUNDS:	15 Doherty and of course, Ms. Elliott being
16 Q. When I first bought the taxi stand, I paid	16 declared experts and there's no objections, as
17 \$ 1,206.00 a car. The last increase, my cars	17 I understand it, on anybody's part in that
18 went from \$1,206.00 to \$3,221.00 a car.	18 regard, but I will have Mr. Doherty speak
19 CHAIRMAN:	19 briefly to his credentials. Mr. Doherty,
20 Q. Okay.	20 first of all, if you could tell us your full
21 MR. EDMUNDS:	21 name and your address, please?
22 Q. And if you look at another increase, well,	22 MR. DOHERTY:
23 that's going to, you know, put us out of	23 A. Shawn Francis Doherty. I live at 4801 Vivian
24 business, that's all I can say.	24 Road in Cedar Valley, Ontario.
25 COMMISSIONER WHALEN:	25 STAMP, Q.C.:
Page 18	Page 20
1 Q. How long have you had your -	1 Q. And where are you employed, Mr. Doherty?
2 MR. EDMUNDS:	2 MR. DOHERTY:
3 Q. Three years.	3 A. I'm currently employed with the Facility
4 COMMISSIONER WHALEN:	4 Association.
5 Q. Three years?	5 STAMP, Q.C.:
6 MR. EDMUNDS:	6 Q. And what is the nature of your employment with
7 Q. Yeah.	7 Facility?
8 CHAIRMAN:	8 MR. DOHERTY:
9 Q. Okay. Thank you very much.	9 A. My title is Senior Vice President of Actuarial
10 MR. EDMUNDS:	10 Services, and the Chief Financial Officer.
11 Q. Okay, thank you	11 I'm responsible -
12 CHAIRMAN:	12 STAMP, Q.C.:
13 Q. So Mr. Stamp, I guess now finally it's back to	13 Q. Can you--I'm sorry.
14 you? I want to thank both of those--thank	14 MR. DOHERTY:
15 you, gentlemen, for that presentation, by the	15 A. Sorry. I'm responsible for both provision of
16 way. It was much appreciated, and of course,	16 actuarial services, the management of external
17 you understand it will form part of the public	17 actuarial services, and I'm responsible for
18 record. Okay, sir.	18 accounting and finance.
19 STAMP, Q.C.:	19 STAMP, Q.C.:
20 Q. Thank you, Mr. Chairman. Mr. Doherty is ready	20 Q. Can you speak, Mr. Doherty, to your--you know,
21 to take the stand and present the material	21 your education and training in terms of--as an
22 that we need to present.	22 actuary?
23 MS. GLYNN:	23 MR. DOHERTY:
24 Q. Mr. Stamp, we didn't query whether your	24 A. Certainly. I have a Bachelor of Science from
25 witnesses would like to be sworn or affirmed.	25 the University of Toronto. I'm a fellow in

	Page 21	Page 23
	good standing of the Canadian Institute of	1 A. That's correct.
2	Actuaries and the Casualty Actuarial Society.	2 STAMP, Q.C.:
3	I have approximately 25 years of experience in	3 Q. All right. Now I just want to briefly have
4	the actuarial profession. I started off	4 you speak to the issue of the data that is
5	working on pricing exclusively for the first	5 used for purposes of preparing your report.
6	five years of my tenure. After that, I worked	6 There is a section on that at Page 432. Could
7	at various organizations where the primary	7 you just speak briefly to the data component
8	responsibility was to either start an	8 that is relied upon?
9	actuarial services part with the organization	9 MR . DOHE
10	or to reorganize one that was already	10 A. Sorry, we want to go to page -
11	existing. With the Facility Association, I	11 STAMP, Q.C.:
12	joined in December of 2010 with the initial	12 Q. 4 OF 32 of the Memorandum and to the heading--
13	charge of bring the actuarial services that	13 the data.
14	were current-at that time, were all	14 MS. GLYNN:
15	outsourced--to bring them inside and to	15 Q. Mr. Stamp, we're trying to bring them up on
16	promote what we call a hybrid actuarial model	16 this screen, so if you -
17	where some services are performed internally	17 STAMP, Q.C.:
18	with the Facility Association and some are	18 Q. Oh, I'm sorry. Yes, okay.
19	provided by an external party.	19 MS. GLYNN:
	STAMP, Q.C.:	20 Q. And we'd just like to confirm that that's the
21	Q. Those are all my questions with respect to Mr.	21 page that we're looking for, please?
22	Doherty's training and experience, Mr.	22 STAMP, Q.C.:
23	Chairman. I would ask that he be declared an	23 Q. Oh, my. I need better glasses than this, Mr.
24	expert in actuarial science related to, I	24 Chairman.
25	guess, topics for the purposes of the	25 MR. DOHERTY:
	Page 22	Page 24
	presentation of the Actuary Report to the	1 A. I think it's Page 40. You're looking for
2	Board.	2 exhibit
	CHAIRMAN:	3 STAMP, Q.C.:
	Q. Absolutely.	$4 \quad$ Q. 4 of 32.
	STAMP, Q.C.:	5 MR. DOHERTY:
6	Q. Thank you. All right. Mr. Doherty, if we	$6 \quad$ A. 4 of 32?
	turn first of all to your--start just with	7 MS. GLYNN:
	your Actuarial Memorandum. Can you turn to	8 Q. Of which section, Mr. Stamp?
9	that, please?	9 STAMP, Q.C.:
	MR. DOHERTY:	10 Q. 2(a) 2.1. It's in the very early part of the
11	A. Absolutely, and I will confirm that I prepared	11 report, Mr. Doherty, and it follows--after the
12	the indications of the Newfoundland taxis on	12 Actuary's Report, there's a heading on "Data
13	behalf of the Facility Association, and I	13 and Methodologies" and then there's a further
14	completed those indications in compliance with	14 section on data. And I believe the next page
15	the Canadian Institute of Actuaries' standards	15 will be the page I'm looking for--yes
16	of practise--all of the standards of practise,	16 MR. DOHERTY:
17	but in particular Section 2600, which is on	17 A. So Data and Methodologies, Section 2(a) 2?
18	rate making for property casualty insurance.	18 STAMP, Q.C.:
	STAMP, Q.C.:	19 Q. No. The one below it.
	Q. All right, then, and so the Section 2(a)	20 MR. DOHERTY:
21	report which is at Page 3 of 32 of the	$21 \quad$ A. 2(a) 2.1?
22	Actuarial Memorandum. Is that your signature	22 STAMP, Q.C.:
	and is that the--I guess adoption of the	23 Q.2.a.2.1
24	report by you?	24 MR. DOHERTY:
	MR. DOHERTY:	25 A. Yeah. So, with respect to the data that we

	Page 25
1	used, we take it from several sources. The
2	results that we have from the actual taxi
3	itself, we have them as claims recorded and
4	premiums that have been recorded and provided
5	to us at the time of the--available at the
6	time we completed the indication--the data
7	available to use at the time was as at
8	December 31st, 2012. We augment this with
9	valuation data that was prepared with respect
10	to Facility Associations non-private passenger
11	data set as at June 30th, 2013. Our valuation
12	process is updated every quarter for the
13	Facility Association business in each
14	jurisdiction and we view the results on two
15	basis: private passenger and non-private
16	passenger. The rationale for that split is
17	that our members share the results of the
18	Facility Association on the basis of
19	jurisdiction, business segment, being private
20	passenger and non-private passenger, and
21	accident year results, and the sharing is done
22	based on share ratios that are determined for
23	each of the members at that level of detail.
24	In addition to the valuation, then, as
25	identified in .2 as I mentioned already we

Page 26
use the experience of the taxis that is provided to us through the servicing carriers providing that information to the Insurance Bureau of Canada, who operate as the statistical agent on behalf of GISA, which is the government agency in charge of gathering information. The information is provided by the servicing carriers to the Insurance Bureau of Canada through what is called Statistical Plan Nine, which is the automobile plan specifically for Facility Association. The results were compiled as of December 31st, 2012. We also used, as identified as Number 3 , the industry automobile insurance experience through that same basic data structure, of the commercial vehicle experience as at, also, December 31st, 2012. Our view is that the data is reliable and is sufficient for the analysis that was completely. We did not do independent analysis or independent confirmation on individual pieces, particularly of the industry results, as we do not have access to that audited information. However, we believe that it is appropriate and we do look at how
it changes from one year to the next and identify any reconciling issues, and if we find that there are concerns, we will raise it with the IBC to get an understanding of it. We are fine with the data as been provided. 6 STAMP, Q.C.:
Q. All right. So with that preliminary discussion, Mr. Doherty, I'm going to ask you to turn to the exhibit package and in particular, first of all, to Exhibit D-1.

MR. DOHERTY:

A. So that would be on Page 40 of the overall package. The structure of this particular exhibit, along the rows you're going to see that there are accident years, and each of the sets of accident years is split among the coverages. The top one that we have is total; that is the all-coverages experience. Down below, we have it broken down into various components. The first one that you will see there is referred to as Third-Party Liability. We'd put it in brackets as indivisible. That is the combination of bodily injury and property damage. Beneath that, you will see Accident Benefits. Again, we refer to it as
indivisible. There are component pieces or kinds of loss within accident benefits: medical, disability income, death benefit, etcetera. We've grouped those all together under the one common heading of "Accident Benefits." Below the Accident Benefits, you will have uninsured automobile, and then the physical damage coverages will follow after that. If I could -
STAMP, Q.C.:
Q. So Mr. Doherty, you're saying that the top block is the sum of all of the coverages that are listed below the individual coverages?
MR. DOHERTY:
A. That's correct.

16 STAMP, Q.C.:
Q. And in each of these areas, the total coverages and the individual coverages, you have the years 2003 through 2012 identified?
MR. DOHERTY:
A. That's correct.

STAMP, Q.C.:
Q. Okay. So if you can just walk us through, let's start with the--going across the page with the Earned Exposure, just explain to us

	Page 29	$\text { Page } 31$
	what that is, please?	1 Column 1, and you'll see that the average, and
	MR. DOHERTY:	2 this isn't reflective of any one individual
	A. Yeah. So in Column 1, we have the Earned	3 taxi but for the period 2012 and again, this
	Exposure rate that's taken from the AIX data	4 is on an earned basis, the average premium
	exhibit. Earned Exposure is a description of	5 charged was \$2,056.00.
6	the number of taxis that are insured through	6 STAMP, Q.C.:
7	that particular period. So, it's a calendar	7 Q. And so if I go back to 2003, Mr. Doherty, what
8	year adjusted number. If you have a taxi	8 is that average number in 2003?
	that's insured for six months in the calendar	9 MR. DOHERTY:
10	year, it will be counted as half a taxi. So	10 A. It was \$1,931.00.
11	816 exposure counts for accident year 2012	11 STAMP, Q.C.:
12	refers to the exposure of 816 taxis equivalent	12 Q. That's for all of the coverages that those
13	to being insured for one year over that	13 taxis, at that time 652 taxis, carried?
14	period. In Column 2, from that same data	14 MR. DOHERTY:
15	source, we have the Earned Premium. Earned	15 A. That's correct.
16	Premium, again, reflects policies that are	16 STAMP, Q.C.:
17	exposed and the exposure during that	17 Q. And in 2012, the number is \$2,056.00?
18	particular period. So if you have a policy	18 MR. DOHERTY:
19	that is written in--on July 1st and it's for	19 A. Correct.
20	12 months, half of that premium would get	20 STAMP, Q.C.:
21	earned in the initial year and half of it will	21 Q. Okay, and the Recorded Indemnity, Column 4?
22	get earned in the second year, and in this	22 (10:15 a.m.)
23	case again, focusing on accident year 2012, we	23 MR. DOHERTY:
24	have $\$ 5,534,000.00$ of Earned premium	24 A. Yeah, and I apologize that--the heading in
25	represented. In Column -	25 here on Column 4, it says FA PPV Valuation
	Page 30	Page 32
	STAMP, Q.C.:	1 Data. That's incorrect. It's actually the FA
2	Q. I'm sorry, where were you reading from when	2 AIX data. It's recorded indemnity for the
3	you mentioned the Earned Premium amount?	3 taxi business. That's an unfortunate typo
	MR. DOHERTY:	4 there.
	A. Oh, sorry. I want to take you up, please--I'm	5 STAMP, Q.C.:
	sorry, I'm looking at the screen, it's--that	6 Q. And what is Recorded Indemnity?
	was for UA. The total at the top, yes, is	7 MR. DOHERTY:
8	\$1,677,734.00.	8 A. Recorded Indemnity reflects some of the
	STAMP, Q.C.	9 transactions on claims payments and the
10	Q. So this is the Earned Premium for taxi	10 current case reserves that have been provided
	business only?	11 for from the servicing carriers and through
	MR. DOHERTY:	12 the AIX system. So it reflects the life-to-
	A. For taxi business only for the Facility	13 date payments plus outstanding case reserves
14	Association.	14 as at December 31st, 2012, for each of those
	STAMP, Q.C.	15 accident years. So all of them are as at
16	Q. For 2012, and this is the sum of the premium	16 December 31st, 2012. You can think of it as
	for all coverages that are listed below, is	17 at December 31st, 2012, this is what the
18	that correct?	18 servicing carriers have provided as their best
	MR. DOHERTY	19 estimate of the cost for settling the claims
20	A. That's correct.	20 for each of those individual accident years.
	STAMP, Q.C	21 Because it involves actual claims payments,
	Q. Okay. Go ahead	22 they don't have to estimate that part of it.
	MR. DOHERTY	23 They've actually settled, at least partially,
24	A. In Column 3, we come up with the Averaged	24 some of those dollar amounts. The case
25	Earned Premium simply by dividing Column 2 by	25 reserves are the part that they also provide,

```
    which is an estimate that is based on an
    assessment that's done on individual claims
    themselves.
STAMP, Q.C.:
    Q. So this Column 4, Mr. Doherty, does this
        column reflect known accidents, so to speak?
MR. DOHERTY:
    A. That's correct.
STAMP, Q.C.:
    Q. And the amounts that have been paid to date
        and the amounts that are expected to be paid
        in respect to those known accidents?
MR. DOHERTY:
    A. Yes.
STAMP, Q.C.:
    Q. Okay. Can you just tell us what Column 5 is?
MR. DOHERTY:
    A. Yeah. Column 5, you'll see that it has
        nothing in the total, but it would reflect,
        when you look at the individual coverage
        levels, what we refer to as loss development
        factors. The idea behind the loss development
        factor is that it's an adjustment for the
        information we know as at December 31st, 2012,
        what we believe those claims will ultimately assessment that's done on individual claims themselves.
STAMP, Q.C.:
Q. So this Column 4, Mr. Doherty, does this column reflect known accidents, so to speak?
MR. DOHERTY:
A. That's correct.
STAMP, Q.C.:
Q. And the amounts that have been paid to date and the amounts that are expected to be paid in respect to those known accidents?
MR. DOHERTY:
A. Yes.
STAMP, Q.C.:
Q. Okay. Can you just tell us what Column 5 is?
MR. DOHERTY:
A. Yeah. Column 5, you'll see that it has nothing in the total, but it would reflect, when you look at the individual coverage levels, what we refer to as loss development factors. The idea behind the loss development factor is that it's an adjustment for the information we know as at December 31st, 2012, what we believe those claims will ultimately
```

 Page 34
 get settled at. In addition to the claims
 that we know, it also has a provision for
 claims that have occurred or events that have
 occurred and claims that could arise out of
 that, for which a provision is not already
 included in the individual case reserves.
 Obviously -
 STAMP, Q.C.:
Q. And so--sorry?
MR. DOHERTY:
A. Sorry. Obviously if a claim hasn't been
reported to the servicing carrier or it's at
the servicing carrier, but they haven't
forwarded that information in through the IBC,
the claim has occurred, we just don't have it
recorded at the Facility Association yet, and
so part of our job is to estimate a provision
for those amounts.
STAMP, Q.C.:
Q. So those unknown claims, so to speak, are not
recognized in Column 4, but they're trying to
be accounted for through Column 5?
MR. DOHERTY:
A. Correct.
STAMP, Q.C.:

Page 34
get settled at. In addition to the claims that we know, it also has a provision for claims that have occurred or events that have occurred and claims that could arise out of that, for which a provision is not already included in the individual case reserves. Obviously -
STAMP, Q.C.:
Q. And so--sorry?

MR. DOHERTY:
A. Sorry. Obviously if a claim hasn't been reported to the servicing carrier or it's at the servicing carrier, but they haven't forwarded that information in through the IBC, the claim has occurred, we just don't have it recorded at the Facility Association yet, and so part of our job is to estimate a provision for those amounts.
STAMP, Q.C.:
Q. So those unknown claims, so to speak, are not recognized in Column 4, but they're trying to be accounted for through Column 5?
MR. DOHERTY:
A. Correct.

STAMP, Q.C.:
Q. Just for purposes of clarification here, there aren't any factors listed in Column 5 for the all coverages group, but if I were to take the 2003 ultimate indemnity in each of the individual coverages and bring it to a total, would that 2003 amount be the $\$ 2,125,082.00$? MR. DOHERTY:
A. That's correct, and the implied factor--you can divide Column 6 by Column 4 and you can get an implied loss development factor for each of those accident years.
STAMP, Q.C.:
Q. For all coverages?

MR. DOHERTY:
A. For each of the coverages, and even for the total. You can certainly tell that, because the column for--accident 2003, Column 6 is the same as Column 4, so we aren't in--assuming that there's any further development on claims that we already know about for 2003.

```
STAMP, Q.C.:
```

Q. All right, and what is--so the ultimate indemnity is just the amount that's in Column 4 adjusted for the factor that you have in Column 5?
A. Yeah. So really we're looking at two different provisions and we have case reserves that are amounts that the servicing carriers and their claims adjudication process have identified that they think they're ultimately going to pay out. We look at the history of how claims develop over time and then we make an assessment of that, and so our final assessment will include a provision for both claims that have occurred but are not reported and included in the case assessment, but also it will include an assessment of how adequate the historical case reserve activity is at that point in time. And the reason I bring that up is that it is possible to have a value in Column 6 that's actually below the value that's in Column 4. And I think you'll find that, for example, in accident year 2009, the amount of recorded level that we have in total is $\$ 2.8$ million but we're estimating that at final resolution we will only pay out $\$ 2.6$ million and that's because the case reserves historically, at that point in time, have tended to be higher than what's necessary to

	Page 41		Page 43
	STAMP, Q.C		through columns 12 through 16. And we also
2	Q. All right. If you can just come across the		need to recognize that the premiums that we
3	page, then, to the--Columns 9, 10 and 11, Mr.		charged in the past are not the premiums that
4	Doherty.		we're currently charging. And in addition to
	MR. DOHER		that, there are underlying changes in the
6	A. The portion of this exhibit beyond Column 8 is		business itself and the coverages that are
7	an attempt, then, to work through the process		purchased and the vehicle values that are
8	of what we're trying to achieve in terms of a		being insured that we're going to get
9	rate level indication. What we're trying to		additional premium for as a matter of course,
10	look at is a forward-looking exercise for a	10	and so we estimate what those impacts are. We
11	future policy period, what is the rate that we	11	at those through the drift characteristics
12	need to charge to capture all the costs	12	that we referred to in Column 10 and I'm happy
13	associated with providing insurance, and that	13	to go through any of those.
14	includes, obviously, the indemnification part,		AMP, Q.C.:
15	but also to capture our expenses. To go	15	Q. All right, so just quickly then, what is the -
16	through that exercise, we have two bases that	16	what number is showing up in Column 9, what's
17	we start with and this--in particular, all of	17	that you intend to identify?
18	$\mathrm{D}-1$ is associated with looking just at the		R. DOHERTY
19	experience itself, and again we're looking at	19	A. So Column 9 should reflect the difference
20	a 10-year period. Our goal through this	20	between the rate level that was available for
21	process is to take the historical events that	21	any particular accident year, and the rate
22	have occurred and use those as a way of	22	level that is currently available before we
23	estimating what might happen in the future.	23	make any changes. In particular, the total,
24	WE don't know what's going to happen in the	24	we're not reflecting anything in any of those
25	future, but we have a pretty good idea of	25	columns because we'd have to do some weighted
	Page 42		Page 44
1	what's happened in the past, and we believe		averages to get to a total level, but if you
2	there should be a connection between what's	2	look just down below, the first set that you
3	happened in the past and what's going to	3	see below is third party liability, and the
4	happen in the future, and to that extent, the	4	factor that you're seeing there at 1.4992 is
5	process that we're going through here, we're	5	an estimate of the increase that happened for
6	trying to, then, adjust the premium levels to		third party liability effective August 1st,
7	what we expect to see before any other rate	7	2013, a 50 percent rate increase. So we're
8	changes occur and we're projecting for each of	8	adjusting the premium levels for each of those
9	the accident years. For the events that gave		accident years to reflect the fact that after
10	rise to claims, say, in action year 2003, what	10	each of this accident years, the only rate
11	claim activity could we expect to arise from	11	changes that had occurred happened effective
12	those same events if they instead incurred, at	12	August 1st, 2013. In fact, as I understand
13	the average accident date, under the future	13	it, rates for taxis for the Facility
14	policy period that we're looking at. The	14	Association prior to our filing last year and
15	average accident date of the policy period	15	the approval, the rates hadn't changed since
16	that we're looking at is about midway through	16	1993.
17	accident year 2015. So our goal of this		TAMP, Q.C.
18	exercise is saying I don't know what's going		Q. And so you spoke about the drift features that
19	to happen in the future, but I can look at	19	are generated in the factor in Column 10, and
20	these ten years and say they might give me	20	how do those factors apply to impact on Column
21	some insight into what might happen in the	21	11 ?
22	future, but I need to put them on a basis that		MR. DOHERTY:
23	I expect to see in terms of cost in the	23	A. Yes, so there's a number of characteristics
24	future, and we do that through a process	24	that we look at on here. Through time, taxis
25	that's identified through--on the law side	25	may purchase higher limits. Instead of

	Page 45		Page 47
	purchasing a half a million dollar limit, they		coverages differently. Rate group doesn't
	may purchase a million dollar limit. They may		affect the third party liability, for
	instead of purchasing a million dollar limit,		stance, it doesn't affect the accident
	they may purchase a 2 million dollar limit.		benefits, for instance, but it does affect the
	When they purchase a higher limit, we charge a		physical damage coverages. Deductibles don't
6	higher premium, and if we see a trend in the		apply to - purchase deductibles don't apply to
	purchases, then we're collecting more premium	7	third party liability and accident benefits,
	over time and if we believe that trend is	8	but they do apply to physical damage. Limit
	going to continue, then over time the		esn't apply to physical damage, but it does
10	portfolio of taxis are buying a higher limit,	10	apply to third party liability. So we mash it
11	then we know we're going to collect more	11	up with the coverages themselves.
12	premium and we reflect that as part of what we		:30 A.M.)
13	would call "a limit drift". To the extent		TAMP, Q.C.:
14	that they are purchasing a high limit, obviously, they're exposed to higher values on	14	Q. All right, and following from that, if you
15		15	could speak to the claim side, the two columns
16	the claim side. So on the claim side, you	16	that contain data there?
17			R. DOHERTY:
18	would also see increases that are imbedded in the trend analysis on the claim side. So we	18	A. Yes, so Columns 12 through 16 provide the
19	recognize that we're collecting additional	19	process that we use to get from the level of
20	premium. When you look at what's happening on	20	ultimate claims that we believe we're going to
21		21	pay out for each accident year to that future
22	the claim side, buried in there may be some impact because over time they're buying high	22	level. The first three columns are described
23	impact because over time they're buying high limits, and so severity, for instance, might	23	as input. Column 12, 13, and 14, they're
24	go up because of that. A limit is one	24	loading factors that we would put in that are
25	consideration. Deductibles on physical	25	not used in this particular filing, but I'll
	Page 46		Page 48
1	damage, if the taxis over time are buying	1	just very briefly introduce what they would be
2	higher deductibles, the premium would actually	2	if they were. Number 12, if you have
3	decrease because we're collecting less money,	3	individual claims detail, you might be able to
4	but again if they're buying high deductible on	4	cap individual claims with a view that
5	the claim side, that would have downward	5	particularly large claims may not happen all
6	pressure on the claims. So you're getting it	6	that often, but you want to reflect it. So if
7	in both sides, and it should be reasonably	7	you're looking at a very small narrow period,
8	aligned. Rate group is another characteristic	8	your experience could be over - you could have
9	that we look at. Unfortunately, with taxis,	9	adverse impact because you're looking at an
10	we don't have detail provided through the plan	10	event in a five year period that really only
11	of operation process on the individual	11	happens once every 10 years or once every 20
12	distribution of the taxis by rate group. A	12	years. You just got some bad luck, it just
13	rate group is a description of the vehicles	13	happened in that five year period. So what
14	themselves. So for this, we're assuming that	14	you would do is cap that loss or remove it
15	over time purchases of new taxis as you renew	15	altogether and replace it instead by a large
16	your fleet will generate on average a higher	16	loss load. So in the case where you have an
17	overall rate group, and so we would be	17	event that has happened, but you think that
18	collecting more premium on the basis of that.	18	size of that is only going to happen once
19	Because we don't have detail, we make an	19	every 10 years, you would remove the claim,
20	assumption that the overall drift is similar	20	say, it's a million dollars, take it out, and
21	to inflation, so I believe we use a 1.5	21	because it happens once every 10 years, you
22	percent additional premium that we would	22	replace it with $\$ 100,000.00$. Because it
23	collect because of the rate group drift. All	23	happens once every 10 years, if you replace a
24	of those are put together. The various	24	million dollars with $\$ 100,000.00$, you're
25	characteristics will affect different	25	capturing the million dollars over a 10 year

loss ratios that those accident years would generate if in 2015 the events from those accident periods took place, and we got the premium that we are currently charging for the taxies. So, in particular, for 2003, notwithstanding the fact that we got a 50 percent rate increase, if you charge those rates in 2015 and you had the same events that you had in accident year 2003 occurring in 2015, we believe the loss ratio would be 151 percent. Similarly, for 2012, the bottom one there, if the events that occurred in 2012 were to be repeated in 2015, and we're charing the premium that we're currently charging, the loss ratio would be 155 percent. Again this column to me indicates that even though we got a 50 percent rate increase last year, I'm still expecting the experience if I don't get further rate increase to be in excess of 100 percent loss ratio, and you can see that 100 percent is for every year, bar one, 2004, and 2005 is close too, but that only gets us to paying for the indemnity if you're at 100 percent. If you're below - if you're over 100 percent, we're not even collecting enough

Page 58
money to pay for the claims themselves, let alone the expenses that are involved in adjudicating the claims, but also our administrative expenses.
(10:45 A.M.)
STAMP, Q.C.:
Q. So Mr. Doherty, if we were to go back to the on-level premium Column 11, and take, for example, 2012, $\$ 2,474,620.00$, that's the onlevel premium that has been, if you like, grossed up premium for all coverages?
MR. DOHERTY:
A. That's right.

STAMP, Q.C.:
Q. So if we were to approximate the proposed increase that is now being requested, what would that number look like, the 2012 number in Column 11, what would that number look like if it included the rate increase we're now seeking?
MR. DOHERTY:
A. In Column 11, it does include it, I think, if we go back to the loss ratio.
STAMP, Q.C.:
Q. No, but this on-level earned premium, that
rate increase that's included there, is that for the 2013 rate increase?
MR. DOHERTY:
A. That's correct.

STAMP, Q.C.:
Q. But the 2014 Application?

MR. DOHERTY:
A. Yeah, that's not included there.

STAMP, Q.C.:
Q. No.

MR. DOHERTY:
A. This is all assuming that we receive no further rate increase. This is a view of the world if the rates remain as they currently are.
STAMP, Q.C.:
Q. But if that rate changes in the manner that we have proposed, what would Column 11 for 2012 look like if that rate were to take you back to 2012? Can you speak to that?
MR. DOHERTY:
A. I'd have to look at what the total amount is.

STAMP, Q.C.:
Q. Well, put it this way, the on-level earned premium for 2012 for all coverages was

Page 60
\$2,474,620.00, right?
MR. DOHERTY:
A. Yeah.

STAMP, Q.C.:
Q. And what percentage component approximately would be composed from third party liability in that number?
MR. DOHERTY:
A. It's approximately 93 percent.

STAMP, Q.C.:
Q. Okay, so a very significant portion of it is third party liability?
MR. DOHERTY:
A. Yes.

STAMP, Q.C.:
Q. Okay. All right, so you've spoken to some extent about the D-5 factor influence, the loss development factor in D-5. Can you then just take us to how that loss development factor is created? I think, Mr. Chairman, Commissioners, I don't understand this loss development factor issue to be much of an issue as between the parties. That's my understanding at least, but I'm going to have Mr. Doherty just sort of run through it, at

	Page 65		Page 67
	appropriate for the various estimates. What		Because we've standardized this template, this
2	we have here in Exhibit D-2 then is not the	2	indication template is applied for all classes
3	taxi experience. It is the non-private	3	of business across all jurisdictions, so you
4	passenger experience, but taxi is included in	4	will every now and again see something that
5	this experience, and the top part, Section A,	5	doesn't necessarily apply specifically to
6	is at June 30th, and this is the ultimate	6	Newfoundland taxies, but where it doesn't
7	indemnity amount by coverage that was selected	7	apply, it doesn't have any impact. So when
8	through the process. In Section B below is		you look at Section C, Column 36, TPL
9	the recorded activity for that same data, but	9	Indivisible in accident year 2012, you'll see
10	as at December, 2012, and the reason we pull	10	an Implied Loss Development Factor of 1.1316,
11	up the recorded indemnity for non-private	11	and I believe if you go back then to Exhibit
12	passenger in that Section B is because our	12	D-1, you should see that 1.131, and you'll see
13	taxi experience is as at December 31st, 2012,	13	it down there at the bottom under TPL
14	and if we apply the methodology as I'll point	14	Indivisible. For 2012, there's a factor of
15	out in a minute in Section C, we've got an	15	1.1316. Now that describes how the D- 2
16	estimate at June 30th that's a selection of	16	Exhibit produces that factor. I do want to
17	ultimate, and I can apply that selection of	17	take us now to Appendix A, where we look more
18	ultimate to any prior diagonal. I can look at	18	closely at the loss development process
19	it, compare to results as at December 31st,	19	itself.
20	2009, and I will be able to tell you from 2009		AMP, Q.C.:
21	what do I think it is to get to ultimate just	21	Q. Just before you go there, Mr. Doherty, so
22	by comparing it, because I have a selection of	22	Column 36 factors find their way into the TPL
23	ultimate for that period. Obviously, at 2009,	23	Indivisible Column 5 grouping in the D-
24	I don't have any accident year 2010, 2011, or	24	Exhibit?
25	2012, so I'm not going to have any data there		MR. DOHERTY:
	Page 66		Page 68
1	at all to apply anything to. I will have it	1	A. That's correct.
2	for 2009 and prior. So if we go down to		STAMP, Q.C.:
3	Section C, all I'm doing here is creating	3	Q. And, I guess, similarly, the other coverages,
4	what's called an Implied Loss Development	4	I think, in Column 42 and onward, find their
5	Factor from my selection of ultimate to the	5	way into the individual coverages in D-1 as
6	recorded activity that's in Section B. So for	6	well?
7	accident year 2012 in Section C for bodily		MR. DOHERTY:
8	injury, I would use a factor of 1.1239, apply		A. That's correct.
9	to any piece of my non-private passenger to		STAMP, Q.C.:
10	get from the recorded activity at December	10	Q. Okay, and you were going to take us, I think
11	31st, 2012, to my ultimate estimate associated	11	you said, to Appendix A.
12	with my results as at June 30th, 2013. Now		MR. DOHERTY
13	the results that we have, the data that we	13	A. If we can go to Appendix A, I believe it
14	have available to us on taxies through the AIX	14	starts on page 78. This is the title page.
15	does not split for us bodily injury and	15	We'll go down to page 79. This first section
16	property damage. So we have to use instead	16	is a summary of the results of the Link Ratio
17	the column there in Section C, Column 36	17	estimate process itself. Again,
18	called tPL Indivisible. You can see that the	18	unfortunately, we didn't include the results
19	weighting is just simply a sum of the results	19	of the Expected Loss Ratio. We did provide
20	of bodily injury and property damage. Now we	20	that as an appendium to earlier questions in
21	do have a column in there called DCPD, Direct	21	March. So Section Ais the Link Ratio
22	Compensation Property Damage. In some	22	estimates by accident year for non-private
23	jurisdictions that is a coverage under TPL.		passenger, and if we slide down here, you'll
24	That is not a coverage for TPL under	24	see, say, for accident year 2012, we do have
25	Newfoundland, but we include it, anyway.	25	in here - you'll see accident year 2013 is in

estimate for third party liability was lower than the estimate if you used the Link Ratio Method. So that again that difference is all pushed into bodily injury. For accident benefits, we would do the same thing except all of the difference gets pushed into - maybe if you'll just slide up a little bit, I'll see what the column is. In Column 24, called Total Excluding Uninsured Automobile and Underinsured Motorists, the accident benefits government line in Newfoundland includes both uninsured automobile and underinsured motorist coverages. For taxis, there is no underinsured motorist coverage, but again this is non-private passenger in total. So any differences between the final selection for accident benefit government line and the Link Ratio estimate would get pushed into this Column 24, which is really just the accident benefits piece. It's accident benefits indivisible. On the physical damage side, any differences we would actually spread among all the coverages in relation to their contribution at the Link Ratio. So if we had collision, the Link Ratio estimate was
lower than the Link Ratio estimate. What we want to do is take that government line level and allocate it to the coverage because I need to have coverage level ultimates for use in the indication. We have a process in place to move from government line to the coverage through an allocation, and it depends on the individual government line. For third party liability, if there's any difference between the final selection and the Link Ratio estimate, we would put all of that difference into bodily injury. So you'll notice here for 2012 the property damage selected ultimate is $\$ 657,350.00$. That's the same estimate ultimate as you saw in Section A, but the selected ultimate under bodily injury at $\$ 4,431,613.00$ is lower than the estimate from the Link Ratio, and that's because the difference for third party liability is pushed all into the bodily injury. The reason again for accident year 2012, anyway, there's a difference between the final selection and the Link Ratio estimate is because we gave weight in the process to the Expected Loss Ratio estimate, and that Expected Loss Ratio
$\$ 100.00$, but comprehensive was $\$ 50.00$, and a difference of $\$ 1.00$ we would put two-thirds of it into collision, and one-third of that difference into comprehensive. We just split it that way instead of picking one coverage to put all the difference into. Now down below this summary we will see the actual - again the focus of this piece is only on the Link Ratio estimate. We didn't provide the other information, and I apologize for that. If we go down a little bit then into the next section, this is when we actually show the historical development triangles for in this particular case bodily injury, and the snapshots by accident half year, and at different development ages.
(11:00 A.M.)
So if I go down near the bottom there, you'll see that there is a reference to an accident period called 2012-2. The first number in that row is $\$ 1,270,697.00$. That is the reported losses, recorded losses, both payments and case reserves at June 30th in relation to - sorry, at December 31st, in relation to claims that occurred in the second
half of accident year 2012. For accidents that occurred in the first half of 2012, they're reflected in the row above. So the first column that we see there, the amount is $\$ 1,856,324.00$. That is the amount of recorded activity at June 30th, 2012. The next column will show you what the recorded activity was six months later. That is at December 31st, 2012. The final column for that one reflects $\$ 3,148,441.00$, and that is the recorded activity for accidents that occurred in 2012, the first half, but as at June 30th, 2013. In fact, that last diagonal in that triangle reflects the view of each of those accident periods as at June 30th, 2013. The immediately prior diagonal is the one that is December 31st, 2012. So you'll recall in an earlier section, I said that we looked at our selection ultimates and we compared them to the recorded activity at December 31st, 2012. Those values that we got as at December, 2012, came from that penultimate diagonal, the second from last diagonal. So if we were to go down now - this is the actual experience at different points in time for each of those

Page 74
accident periods. Stop me if I'm missing anything.
STAMP, Q.C.:
Q. So this is simply taking those dollar value data out six months, 12 months, 18 months, and so on?
MR. DOHERTY:
A. Absolutely. They're different snapshots, but they're cumulative totals of recorded activity, so it's life to date payments for that particular accident period and the current estimate of case reserves at that period.
STAMP, Q.C.:
Q. Okay.

MR. DOHERTY:
A. So we'll continue going down to the next page. This is just more of the same. This is a continuation of the triangle. The triangle is kind of two big. We could put it all on one page, but I think we'd have to call my brother-in-law, the optometrist, to help us out with seeing it.
STAMP, Q.C.:
Q. Have we gone too far?

MR. DOHERTY:

A. No, this is perfect. You'll see here now we're actually looking at what we refer to as link ratios. These are simply the division of one column by the prior column from the previous triangle. So at the bottom there, you'll see 2012-2, that's accidents occurred in the second half of 2012. The 6 to 12 link ratio is the results you get when you divide the value that was under Column 12 by the value under Column 6 for that accident year. What it means is that between H 6 months and 12 months, accident year 2012-2, the recorded losses increased by 46 percent. That's the 1.46. Similarly, at that same period going from accident year - sorry, from H6 months to H12 months for the previous accident period, that is accidents that occurred in the first half of 2012, those claims increased by almost 44 percent, and for that same accident year sorry, accident period, accident half year, between ages 12 and 18 they increased a further 17.81 percent. The Link Ratio Methodology is based on the assumption that you can use these increases that are noted in
each of these periods as a way of estimating how in the future an accident period will develop between ages 6 and 12 months, and between ages 12 and 18 months. So what we do is we look at those ratios and we select from that ratios that we think going forward will occur. So if we slide down a little bit, you'll see that we've got a - the top numbers are our final selections for each of those, but you'll see that there are a number of different averages that relate to those factors above, and there are a number of factors that also relate to either other results that we have for other jurisdictions, sometimes we look at all the Atlantic, sometimes we look at the industry, and we do look at prior selected LDFs as a guide to help us to understand what changes we're going to make. In this particular case, our final selections for the individual movement from one development to the next are in that first row referred to as "Final Selection". So based on our analysis of the results, we would say that between 6 months and 12 months, an accident half is going to - the reported

	Page 77		Page 79
1	activity is going to increase by approximately	1	1.022 gets applied to the recorded activity
2	51 percent. Then in the next period between	2	for accident year 2012/2, and the 18 to 24,
3	12 and 18 months, it's going to increase by	3	the .9835 gets applied to my accident period
4	another 4 percent, and the period after that,	4	$2012 / 1$. So if you went back up and you keep
5	it's going to increase by about another 1.5	5	in your head 1.022 and . 9835 - good for you, I
6	percent, and then by 2 percent, then by 5	6	wouldn't be able to keep track of that, I'd
7	percent, and then barely increase at all, go	7	have to actually look at a piece of paper. So
8	down a little bit, go down a bit more, go up a	8	we're going to slide up and look back at the
9	little bit. Now in order for us to - instead	9	triangle again. Not that triangle, the
10	of having to multiply each of these periods	10	previous page, sorry, and we'll slide down and
11	each time for an accident year to take it from	11	look at accident year 2012. So if you look at
12	wherever it is to the ultimate, that is to	12	$2012 / 2$ at June 30th, the reported activity is
13	include all that future development, to	13	\$1,855,520.00, and that's the amount that we
14	simplify the process, we have another row in	14	would multiply by the 1.022 factor. For
15	here called "The Product" where the 1.5427 is	15	accident period 2012/1, the recorded activity
16	just multiplying all of the factors that you	16	is $\$ 3,148,441.00$, and that's the one that we
17	see above. The idea is that that would take	17	would multiply by .9835 . If you do those two
18	you from 6 months all the way to ultimate	18	multiplications, and I applaud you if you can
19	because you're taking into account, I'm first	19	do it in your head, and then you add those two
20	going to increase by 51 percent, and then on	20	together, the sum is $\$ 4,992,833.00$, and that's
21	top of that I'm going to increase by another 4	21	the value that you will see in Exhibit D-2.
22	percent, and then I'm going to increase by	22	If we can go back then to Exhibit D-2, I'll
23	another 2 percent. This just combines all	23	try and show that that is, in fact - sorry,
24	that information into a single matrix, a 54	24	not D-2, it's the Appendix A. The D-2 is the
25	percent increase from when you initially the	25	final ultimate. I apologize. So page 78 or
	Page 78		Page 80
1	first time look at that particular accident	1	79, I guess, and if you go down to Section B
2	period when it's 6 months of age, it will	2	on it - sorry, go up to Section A. There we
3	increase by 54 percent by the time you	3	go. You'll see for bodily injury under 2012,
4	ultimately settle that based on that	4	we have \$4,992,958.00 and that's how that
5	particular matrix. If you're got an accident	5	reflects back into - so that's how we
6	period and it's at 12 months of age, it's	6	determine the Link Ratio estimate, and again
7	going to increase from that period by about 2	7	when we get to the selection of ultimate, we
8	percent only to ultimate level, and if you've	8	take into account Expected Loss Ratios.
9	got an accident period that is at 18 months of		TAMP, Q.C.:
10	age, it's actually going to decrease. You've	10	Q. So, in effect, Mr. Doherty, what we're doing
11	actually got more recorded than you actually	11	here, as I gather, is filling out the bottom
12	are going to have to sell it for. It's going	12	of that triangle that's blank?
13	to settle for something a little bit less and	13	R. DOHERTY:
14	2 percent below what you've currently got it	14	A. That's correct. We're trying to estimate how
15	at, and 24 to 30, it's going to drop by 97	15	claims will emerge over time.
16	percent. So we would take these factors and		TAMP, Q.C.:
17	apply them to then the values in the most	17	Q. Right. So that whole process is what gives
18	recent diagonal of the triangle to get us to	18	you the Loss Development Factor that you have
19	estimates of ultimate. The 6 to 12 factor	19	in Column 5 of D-1?
20	that we have here, the 1.5427 would apply to	20	MR. DOHERTY:
21	accident year 2013/1. That's the accident	21	A. That's correct. So if we go back then to D-1
22	period at June 30th that's at 6 months of age.	22	and just look at the total for a second. So
23	I'm not interested in that one, it's not going	23	in Column 4, we have the total recorded
24	to show up in our indication, but the next two	24	activity. This is before we do the estimates
25	do have an impact. The 12 to 18 month, the	25	of ultimate, and you'll see at the bottom the

	Page 81	Page 83
	total is $\$ 22,552,791.00$. When we develop all	which we touched on already on our way through
	the individual accident years to ultimate, the	and come back to that more specific
	total is \$22,552,118.00. You can see there's	l, again just to have you clarify as we
	not much of a difference there. The	lead into this, the distinction between the
5	difference between the recorded indemnity and	Column 5, Loss Development Factor, and the
6	the ultimate indemnity we refer to as IBNR.	Column 15, Loss Cost Projection Factor?
7	That's a provision for both true incurred but	7 MR . DOH
8	not reported levels, that is for claims that	8 A. Column 5, Loss Development Factor, is meant to
	ve occurred, but haven't been reported, but	recorded activity to what we think
10	o for development unknown claims. In this	10 that particular accident year we're ultimately
11	ticular case, the two for this particular	11 going to pay out for claims that have occurred
12	portfolio and for non-private passenger	12 whether or not we know about them. The Loss
13	business in Newfoundland, the two of those	13 Projection Factor is a way of taking again
14	basically are washed. The future development	14 events that occurred in a particular accident
15	known claims is going to be a negative	15 period and claims arising out of those and
16	number, so that it offsets the provision we	16 projecting them forward to a future period to
17	would need for truly incurred, but not	17 make it look like what would happen if those
18	reported to us. So the end result is, as you	18 same events occurred in that future period,
19	can see, there's really in total no IBNR.	19 what would the claims arising out of that look
20	There is IBNR certainly on individual accident	20 like. So if we move across to Column 15 -
21	periods. You can see the difference between	21 STAMP, Q.C.:
22	2012, there's about a $\$ 500,000.00$ of IBNR that	22 Q. Just before we go there, Mr. Doherty, in my
23	take you from 2.8 million up to 3.3 million.	23 remarks before we began the discussion on
	There's a small amount of IBNR in 2011. It's	24 Column 5, I did indicate that it was my
25	about 66/67 thousand, something like that.	25 impression, at least, that there wasn't
	Page 82	Page 84
	For 2009 and 2010, actually it's a negative	significant disagreement between ourselves and
	IBNR, and those were the places where again we	perhaps Oliver Wyman on those factors that are
3	saw those cumulative factors, those link	found in Column 5. Is there a divergence of
4	ratios were actually below 1 , meaning that we	opinion in respect to the factors in Column
	lieve that the recorded activity is more	$15 ?$
	than sufficient for providing for claims that	6 MR. DOHERTY:
7	we're ultimately going to pay out.	Yes
	STAMP, Q.C.:	8 STAMP, Q.C.:
	Q. All right, then. Mr. Doherty -	9 Q. And order of magnitude?
	Chairman:	10 MR .
	Q. We were going to take a break. Are you going	11 A. Significant.
	to be finished - is it okay for you now?	12 STAMP, Q.C.:
	STAMP, Q.C.:	13 Q. Okay.
	Yes, this is an excellen	14 MR . D
	CHAIRMAN:	15 A. So under Column 15, I'm going to first take us
16	Okay, we'll take fifteen and be back at 11:30.	16 to Exhibit D-5, and then I will first show
17	(RECESS - 11:13 A.M.)	17 where these factors that you see in D-1 come
	(11:45 A.M.)	18 from, how we derive them, and then we'll drill
	MP, Q.C.	19 down into more detail on how the support in
20	Q. Okay, Mr. Chairman	20 behind those factors is generated. So if we
	CHAIRMAN	21 move to D-5, which I believe is on page 61 of
	Q. Yes, sir, you may carry	22 the package, the first section is just - now
	STAMP, Q.C.:	23 all of the results that we have in the top
24	Q. Thank you. Mr. Doherty, I'm going to have us	24 part is reflective of the Newfoundland
25	move along now to the Column 15 discussion,	$25 \quad$ Facility Association taxis. The first part is

	Page 85		ge 87
1	earned exposure, so this will look the same as	1	later on, we produce models for frequency and
2	what you saw, I believe, in Column 2 of D-1	2	severity, and if you multiply frequency and
3	and it's by accident year. We have a line	3	verity, you get loss cost. These are fitted
	drawn between accident year 2012 and 2013	4	values. That's the model output. These are
5	because we're now getting into the prospective	5	t actual values, but are fits for those, for
6	exercise. We are now trying to move from what	6	ch of those accident periods, and you'll see
7	has happened in the past and estimate what may	7	at they go out to 2017, and again this is a
8	happen in the future. We need to have the	8	spective exercise. If you look at the
9	future levels of earned exposures by coverage	9	change, say, for bodily injury going from 2016
10	so that we can do weightings if we	10	2017, that reflects the annual increase
11	So you'll see under - first of all, Columns	11	from our trend model for bodily injury.
12	2 , and 3, which are the sub-coverages under	12	Similarly, with property damage, you'll see
13	third party liability, again the dataset	13	2016 to 2017 going from 201 to 204, almost
14	we have to use at December 31st, 2012, for	14	205. Down below that, you'll see that there
15	Newfoundland taxis, did not have that deta	15	are - it's a section that's referred to as @
16	split, and that's why you see those exposures	16	Projected Average Accident Dates, and we have
17	as zero, but the third party indivisible,	17	two sets. One is the prior analysis and the
18	which I believe is in Column 10, will show	18	current analysis. So the prior analysis, the
19	exposure counts that we are seeing for	19	average accident date that was used was June
20	those coverages on a combined basis. You	20	22 nd , 2014. The current one is July 23rd,
21	see that beyond accident year 2012, we're ju	21	2015, and what we're doing here is we're
22	using the same exposure as we have in 2012,	22	ying to estimate from our loss model output
23	for the	23	r commercial vehicles what would be the loss
24	assume any	24	cost we would project at that average accident
25	purposes by coverage for what we're trying to	25	date. So for July 23rd, 2015, which is with
	Page 86		Page 88
1	achieve here today, but we do need to have	1	spect to the current indication. For bodily
2	some number in there so we can sum across. So	2	injury, we want to give - accidents that
3	we'd just assume that the same level of taxi	3	occurred midway through 2015, those are going
4	purchases by coverage is what you see here,	4	to be a weighted average of accident year 2015
5	and you can see that third party liability in	5	and accident year 2016, and that's because the
6	2012, we had 816 earned exposures or earned	6	average accident date for 2015 is July 1, so
7	taxis, accident benefits was slightly lower	7	it's a little bit earlier than that, so you
8	than that, so not all the taxis purchased	8	have to give some weight to accident year
9	accident benefits. Uninsured automobile,	9	2015, and you'll see at the very bottom there
10	of them do purchase uninsured automobi	10	it says, "weights by accident year". So we
11	coverage, and we'll talk a bit about the	11	give 2015 accident year the loss cost from
12	average premiums and stuff like that a little	12	olumn 17. We give it 94.2 percent weight,
13	bit later on when I get to the C-1 Exhibit.	13	and in 2016, we give 5.8 percent weight. Those
1	Very few purchase collision and very few	14	eights are determined by the number of days
15	purchase comprehensive, but about a quarter of	15	relative to the average accident date of the
16	them purchase specified perils, which is a	16	individual accident year. So each accident
17	subset of coverages under comprehensive. So	17	year has an average date, and it's generally
18	under the second section on this exhibit, if	18	around July 1. Sometimes it'll be July 2,
19	we could just slide down a little bit, what	19	metimes it'll be July 20th, it depends on
20	we're seeing here are model loss costs of	20	he number of days and the year itself, and we
	industry data as at December 31st. This is	21	ke the average of that. So this allows us
22	modelled loss cost not of Newfoundland taxis,	22	to for bodily injury, you can do a weighted
23	but of Newfoundland industry commercial	23	average of $\$ 360.78$, which is the fitted loss
24	vehicles. This comes out of our trend	24	cost we're projecting for accident year 2015
25	analysis process. As I'll show a little bit	25	for commercial vehicles bodily injury, and

	Page 89		Page 91
1	\$376.78, and if you weight those two together		we're going to see here. Actually, it's a
2	ng the weights down below, you'll get	2	weighted average of the selected loss cost
3	\$361.71. That's our projection for accidents	3	that we're seeing on this page, so if we slide
4	that occur on average on that date for bodily	4	down a little bit until we see accident period
	injury. This allows us to determine a loss	5	2012, there we go, there's two values for
6	cost projection factor for any accident year,	6	accident year 2012. For the first half, if
7	moving from that accident year as average	7	u go across to the final column, it might be
8	dent date, to that future date. So, for	8	a little bit difficult to trace across, but
9	instance, if I want to determine a factor that	9	the value is $\$ 313.19$. That's the average loss
10	es me from 2012 accident year, I would	10	cost that we fitted for accident half 2012,
11	simply divide $\$ 361.71$ by the loss cost	11	H1, and for 2012, H2, it's the next one,
12	projected fitted value for 2012, being	12	\$320.06. Now the value that we have for the
13	\$316.76, and that gives me a way of moving	13	hole accident year is $\$ 316.76$. It's a
14	from accidents that occurred in 2012 to my	14	weighted average of those two values and we
15	projected level, July 23 rd, 2015. We do this	15	weight it based on the earned exposures. It's
16	for each of the coverages. So you'll see for	16	not an even split between the two accident
17	each coverage there is a projected loss cost	17	years. So if we scroll down now to page 123,
18	based on the above, weighted average of the	18	this is the underlying data that supports our
19	above, for the current analysis average	19	analysis, and if we go down to the bottom a
20	accident date of July 23rd, 2015. The factors	20	little bit, you'll see the exposures that we
21	themselves then, I believe, are on the next	21	have. That first column of numbers, you'll
22	page if you scroll down a little bit. For	22	see that for $2012-\mathrm{H} 1$, and $2012-\mathrm{H} 2$, the earned
23	each of these, we're simply dividing again the	23	exposures in the first period is \$11,448.00
24	amount that's in the column for the individual	24	and in the second period it's $\$ 12,361.00$.
25	accident year, and we're dividing that into	25	These are commercial vehicles for the
	Page 90		Page 92
	the projected level for the July 23rd. So for	1	industry. We would weight those two sets of
2	2012 , if you take the $\$ 361.71$, which is the	2	loss cost that I talked about earlier, \$313.00
3	projected value at 2015, July 23rd, and you	3	and change, and \$320.00 and change, against
4	divide that into the $\$ 316.76$ that was the	4	these two values to come up with the final
5	projection for accident year 2012, that ratio	5	value for 2012 , being $\$ 316.76$. Again this is
6	is 1.1419. That is to move from events that	6	for industry Newfoundland commercial vehicles,
7	occurred or claims that arise out of events	7	and this is the basis that we modelled on.
8	that occurred in 2012, the average accident	8	Now I want to stay on this page for a little
9	date, to that future average accident date,	9	bit and maybe just scroll up to give an idea
10	you need to increase them by approximately	10	of the overall. This is our dataset that is
11	14.2 percent to get them to what we would	11	used for the trend analysis. I'll just get
12	to as on-level. We take these factors	12	you to scroll up just a little bit more, so I
13	directly from this D-5 Exhibit and put them	13	can see the column headings. So again this is
14	into the D-1, and that's where you'll see	14	the Newfoundland commercial vehicle
15	these factors. All of the factors that you	15	experience. In Column 1, that's pulled
16	see in this table here make their way directly	16	directly from AIX. It's earned car years.
17	into the D-1. So from here, what I want to do	17	It's the same type of idea that we talked
18	is move into the Appendix B, but before I do	18	about for the taxi, so one car insured for six
19	that - I can go right there, sorry. So if we	19	months counts as half a car with respect to
20	go to Appendix B, Appendix B itself starts on	20	this. We have three sets of claim counts in
21	page 117 of the package, but I do just very	21	Columns 2 through 4. The first one is Life to
22	quickly want to relate back to that bodily	22	Date Closed Claims, Column 3 is Open Claims,
23	injury loss cost fitted value for accident	23	and the fourth one is our Ultimate, so it's
24	year 2012 that we talked about a little	24	the sum of 1 and 2 , plus to the extent that we
25	earlier, \$316.76, and how that relates to what	25	think that recorded claims activity is going

to go down or up, we would include that in our ultimate. How can claim counts go down? The way that the data is captured through the AIX system, if a claim is settled with no indemnity payment, it's no longer considered a claim, so the count disappears and we reflect that. So to the extent that you got some open claim counts in 3, some of them might ultimately disappear and resolve themselves as zero, that is they got settled for no indemnity payment and, therefore, it's not considered a claim. Column 5 and 6, these are matrix that we use to help to view potential uncertainty in our estimates. There's a favourable and an unfavourable count. The idea behind here is that the analyst is able to put in a range that allows him to say what happens if claim counts are 5 percent favourable, that is lower than what we're expecting, or if they're 5 percent higher. Now that's not relative to what's actually been reported and closed. We're not going to change those counts, those things are done. What we're actually doing on the plus or minus on the favourable count is with respect to the
difference between our ultimate claim count 4 and 2 . So if we go down to the bottom and look at accident year 2012, we have 12 closed claims for the most recent accident half year, and we're assuming that ultimately there's going to be 71 claims that are resolved. So that difference between 71 and 12 reflects the piece that's unresolved claims. If you focus on that difference, then plus or minus 5 percent of that difference added to the 12 would get you either 68 or 74 ultimately, so plus or minus 5 percent for us, favourable or unfavourable, means that if it's 5 percent favourable, there are only going to be 68 claims; if it's unfavourable, it could be 74 claims. You'll see once you go back a bit, the favourable and the unfavourable in the claim count doesn't really have an impact any more because most of the claims are actually at that settlement piece. Again this is just to give us an idea of potential uncertainty or variability. If we scroll back up, I'll take a look at the next few columns then. Columns 7,8 , and 9 , are similar to the counts, except it's with respect to amounts. So Column 7 is

Life to Date Claims Paid. For the most part, you can consider these resolved. There may be some instances where we are able to recover or salvage a subrogation, so your life to date payments might actually go down, but for the most part, you can view that as this is already done, it's done and over with.
STAMP, Q.C.:
Q. And these are dollar amounts, Mr. Doherty, in thousands of dollars, are they?
MR. DOHERTY:
A. It is in thousands of dollars, yes. In Column 8, it's Case Reserves. Again this is Newfoundland commercial vehicles for the industry, and number 9 is Our Valuation Estimate. All the dollar amounts here are indemnity only. There are no industry loss adjustment expenses, no industry ULAE put in here. Because our analysis, our indication, and our workup is all on indemnity only due to the way that we compensate the service and carriage for the adjudication process, we don't do trend analysis, including any loss adjustment expenses. We focus only on the indemnity, and the indemnity trends that we
get out of this are applied to indemnity only, so it's a like to like basis. So Column 9 is our view of the ultimate resolution of industry commercial claims on indemnity from our valuation process. Our valuation guys go through the same thing they would do on our portfolio, but apply it to the industry to come up with these estimates of ultimate. Again the difference between 9 and 7 is both case reserves plus IBNR. In Column 10, 11, and 12, or Column 10 and 11, I guess, we have the same sort of concept that you could apply to the unpaid amount, that is case and IBNR as being favourable or unfavourable. So again this gives us a sense for how good or bad might it look, and if the analyst is uncertain on particular values, they can actually go through and say what happens with my trend analysis if things are much more favourable than what I'm expecting or if they're much more unfavourable. For the most part, we haven't done a lot of that analysis because we haven't had the time to do it, but it is in there for the analysts if they have the opportunity to look at it. As we keep going

	Page 97		Page 99
	across then, I'm just going to focus on	1	reflect the counts, and it's been normalized
	Columns 12, 13, and 14. These then are the	2	because you're putting it against exposures.
	trix that we will be looking at for the	3	You can see - it's hard to see, actually, but
	trend analysis; its frequency, severity, and	4	there's a red dotted line and a green dotted
	loss cost. In our model, we have the ability	5	line that are the favourable and unfavourable,
	to do regression analysis on any one of those		the black line is our selected ultimate
	three matrix, and typically while we're going	7	frequencies, and you can see there's not a lot
8	through the exercise, if we build a structure	8	of variance that's happening in there. So
	that is determine certain periods of time that	9	even at the plus or minus 5, you wouldn't see
10	want to include or exclude, that period of	10	a lot of difference because the main one
11	time is available for frequency, severity, and	11	that's going to differ would be 2012-H2. So
12	loss cost, and we will typically look at the	12	in this case the analyst might look at that
13	impact on all of those, but when we do our	13	and say, I don't really feel I need to do any
14	final selections, almost exclusively we do	14	additional work unless I spread out or think
15	rely on models that are frequency and severity	15	that there's more uncertainty in my selection
16	we arrive at our fitted loss cost by	16	of claim counts and I need to pick something
17	multiplying the two of them together.	17	higher than a plus or minus 5. If we slide
	P0 P.M.)	18	cross, the next chart that we'll see is
19	Frequency, severity, and loss cost are	19	severity, and here - now this again is claim
20	simple matrix that are driven from the actual	20	dollar amount per claim itself. Paid is the
21	underlying data. Frequency is the claim	21	ue column, case reserves are the orange, and
22	count, divided by your exposures, that is out	22	then the black line represents the per claim
23	of 1,000 claims or out of 1,000 vehicles, we	23	IBNR, and we've got these bands around that to
24	capture frequency per 1,000 vehicles, you	24	reflect a plus or minus, and the plus or minus
25	would have 5.94 claims per 1,000 vehicles for	25	is reflective of the orange bar and the
	Page 98		Page 100
	that first period that we're seeing under	1	implied difference between the total of the
2	Column 12. The severity recognizes then	2	two bars and the black line. You can see the
3	what's the average claim cost, so it's the	3	impact of potential variation on that. Then
4	claim amount divided by the number of claims.	4	the final chart that we have on here down
5	In that first case then, it's \$57,804.00 is	5	below is loss cost. The two of them kind of
6	the average size of the claim, if you want,	6	combine, and again you can see the experience.
7	and then finally the loss cost, there's a	7	Now when we're doing the analysis, typically
8	couple of ways you could derive loss cost,	8	it starts with a view of this, and certainly
9	it's all kind of the same, but we've just done	9	there seems to be some concern that we
10	it here simply as Column 12 times Column 13.	10	consider or look at a 20 accident year period.
11	You could also do it by dividing the ultimate	11	My own personal view is I like to look at as
12	claim amount by the exposures. You'll get the	12	much data as I can. That's why we've moved
13	same answers, a couple ways to getting at it.	13	from a five year view in our indications to at
14	In this case then, it's saying that for that	14	least looking at ten years. I think there's
15	first one there's \$343.36 of losses per	15	information you can glean from those earlier
16	vehicle in that particular period. Now if we	16	years, even if ultimately you decide to give
17	scroll down a little bit, I just want to take	17	it no weight. When we're doing our trend
18	a quick look at some of the charts. In this	18	analysis, I think there's good information
19	particular case, the page that we're on	19	that you can learn from looking at a 20 year
20	bodily injury. So the first one is we have a	20	period, and in this particular case, when
21	view then of the entire 20 year period.	21	we're looking at the bodily injury, the
22	There's 40 accident periods in place here.	22	frequency, severity, in particular, I can -
23	The blue bars are closed, the orange	23	this is a bit of a challenge. I think I can
24	represents open claims. These are claim	24	see something that perhaps other people aren't
25	counts - sorry, the frequencies, but they	25	seeing, but I still believe that there are two

	Page 101		Page 103
	different periods that are reflective of	1	around the beginning of the 2004 period, the
	trends in this loss cost data, and we'll get	2	frequency is around 6 per 1,000, and then
	into that in a minute, but maybe we'll jus	3	they're dropping down to something less than
	slide up for the frequency for a second. Now		6 , so I think there's a decrease in trend
5	when we were looking at this, and I think it	5	there. I think, before that, one, it seems to
6	will become more evident if you start looking	6	be very volatile. I'm not sure why there was
7	at the other piece, there appears, in my mind,	7	so much volatility in the claims frequency for
8	to be two distinct periods, and we know that	8	commercial vehicles in Newfoundland prior to
9	re is a reform that occurred in 2004. Now	9	2004, but I think there was significant
10	the challenge is what impact does it have, and	10	olatility there, and I think that there was
11	whether or not it has any impact at all. A	11	at least one trend. There may be two trend
12	\$2,500.00 pain and suffering deductible was	12	periods in there, but because we're not going
13	introduced effective August, 2004. The	13	to be bringing forward any accident periods
14	introduction of a deductible, when I think	14	between 1993 and almost 2003, it doesn't have
15	ut it, I have claims before that were	15	a huge impact on my analysis. While I might
16	brought and part of the claim was for pain and	16	get an analyst who wants to dig into and try
17	suffering. The pain and suffering award -	17	and do more work on those initial periods, I
18	sorry, the pain and suffering claim prior to	18	wouldn't encourage it just because it's not
19	reform was at or below $\$ 2,500.00$. Afte	19	useful information to have. Nonetheless, we
20	the reform, that claim disappears. So I would	20	did bifurcate into pre and post 2004, and we
21	expect to the extent that there are claims	21	sume that it's because of reform. When we
22	that are only for pain and suffering, some of	22	over to the severity side, as we look at
23	those claims where the award that they would	23	at, and these are very jagged lines, they're
24	e gotten before the deductible, those	24	l over the place, but again when we look at
25	claims have gone now because your award is	25	it, we kind of see one period pre-2004 and one
	Page 102		Page 104
1	below the deductible. That cost is borne by	1	period post-2004, and that's just looking at
2	the claimant, they have to eat the first	2	this data. Now when we actually go through
3	\$2,500.00 of a potential settlement. On the		the exercise, we start with this, and we kind
4	severity - if all of the pain and suffering	4	of look at it, we try not to get a bias in our
5	awards are above $\$ 2,500.00$, then all those	5	mind on what's happening, but we want to have
6	cases potentially would still be brought and		an understanding of how these things look. Our
7	there would still be some pain and suffering	7	first step then is to - we go through a number
8	awards. It's just that each one of them would	8	of what we would call standard results. So we
9	be reduced by $\$ 2,500.00$. In that case, there	9	would look at the full -
10	would be no impact on the frequency, but there		STAMP, Q.C.:
11	would be, obviously, an impact on the	11	Mr. Doherty, before you go to that, just to
12	severity. Regardless of what the impact is on	12	clarify where we are here, Appendix Ais a
13	the frequency or on the severity, removing	13	significant package of documentation, and, I
14	\$2,500.00 from pain and suffering, in my view,	14	guess, in the first grouping of that, we have
15	should reduce the loss cost. Certainly if it	15	some 15 pages that touches on the bodily
16	doesn't, you'd have to wonder why you bothered	16	injury component, do we not?
17	introducing legislation in the first place,		MR. DOHERTY:
18	and as we get into it, I'll try and show where	18	Correct.
19	I see the initial impact with $2004-\mathrm{H} 2$, and		STAMP, Q.C.:
20	2005-H1, the impact of the reform on the loss	20	Q. And a separate 15 pages following that for
21	cost. Nonetheless, as we look at the	21	property damage, and a separate 15 for
22	frequency and as we're looking at it, we	22	dent benefits and so on for all the
23	believe there's at least two distinct periods	23	coverages?
24	certainly post-2004 reform. We think that		HERTY:
25	frequencies have been dropping. If I look at	25	A. Yes.

	Page 105		Page 107
	STAMP, Q.C.:	1	We're effectively trying to draw a line
	Q. So we're just looking at the bodily injury	2	through the results so that we can say your
	ackage at the momen	3	loss cost on that axis on your left, there is
	MR. DOHERTY	4	some sort of relationship that we can derive
	A. Yeah, we'll focus on the bodily injury. That's	5	in relation to the time periods on the bottom,
6	here the - I'll run through the process, but	6	and we can do it to such extent that we could
7	the same process applies to all the coverages	7	then use that relationship going forward to
	STAMP, Q	8	project into future periods what loss cost
9	Q. So when we look at the severity here, we go	9	might be, but the key part is to first of all
10	back down to the chart below, which is the	10	do the regression which is simply a
11	mbined loss cost, right, it's a combination	11	mathematical process of estimating what we
12	it, of frequency and severity?	12	ld call a parameter. In this case, the
13	MR. DOHERTY:	13	parameter that we're looking at would be a
	hat	14	trend factor. Determining that factor through
	STAMP,	15	a regression is simply mathematics. You take
16	Q. So you look at that. As	16	the values that you have and effectively
17	gged points and dips and so on. You're	17	you're looking at differences and you're
18	trying to create from that jagged information	18	squaring them, but really it's trying to fit a
19	some information going forward that you can	19	line through a bunch of data points. That's
20	rely upon, is that really what you're trying	20	all it's doing, but it's doing it in a very
21	to do here?	21	mechanical way. There are a number of
22	MR. DOHERT	22	different ways you could draw that line to
23	A. Yeah, what we're going to do from	23	it through it. Least squares is probably the
24	standpoint is determine whether or not there	24	most popular and that's what's built in
25	is a relationship between loss cost and time,	25	through the regression process. So we're
	Page 106		Page 108
1	or loss cost and seasonality. I don't know in	1	trying to fit a line through a bunch of data
2	the beginning whether or not there is actually	2	points. Once we fit that line, then we've
3	a relationship between the two of them. The	3	identified a parameter, an estimate of the
4	regression process that we go through allows	4	parameter, and in this case we would call that
5	you the opportunity to identify that, one, if	5	a trend, an annual trend. That's the first
6	there is a relationship, what is that	6	step of the process. The second step of the
7	relationship, but then further analysis is, is	7	process, though, is to look at the results of
8	that relationship you've identified	8	the regression to see whether or not it's an
9	statistically valid and significant or is it	9	actual statistically valid connection between
10	just a result of the mechanics of the process,	10	the two of them. The first part is completely
1	and that's the key part.	11	mechanical. To come up with an estimate of
	STAMP, Q	12	the parameter is straight mathematics. If you
13	Q. Before you go there, what is this regr	13	give me two columns of data, I can give you a
14	ocess? I mean, at a high altitude, what are	14	arameter estimate based on those two columns
15	you thinking about doing?	15	data. We could do shoe size and income of
16	MR. DOHER	16	the people in this room, and I could determine
17	A. The regression process itself is really	17	a parameter estimate for the relationship
18	trying to again identify whether or not	18	between shoe size and income, but that doesn't
19	there's a relationship between a particular	19	mean it's a statistically valid relationship.
20	matrix, frequency, severity, or loss cost, and	20	To do the second part, which is establishing
21	in this case the main one we have is time. We	21	whether or not there's a statistically valid
22	also have seasonality. We're looking to see	22	relationship between the two of them means you
23	whether or not there is a relationship. A	23	have to look at other regression statistics
24	regression analysis itself, as we apply it, is	24	that come out of that. The ones that help us
25	referred to as a "least squares process".	25	to determine whether or not it's a valid

	Page 109		Page 111
	relationship, one that you can rely on, or is	1	done your analysis, then you would put a "yes"
	it simply a determination based on the noise.	2	in that particular column. You would see what
	The fitting itself is based on a concept of	3	the results are of excluding that point. I'll
	the residuals or differences between the	4	talk about outliers in a little bit. The next
	actual result that you're seeing and the	5	one is a parameter called season, and so your
	fitting result. That difference is called the	6	season in our structure is 1 or 2 . You can
	residual, and the least squares process relies	7	put any indicator you want. You can put 0 and
8	on squaring that and trying to minimize the	8	1 , you could put 5 and 10, it doesn't really
	difference when you do the squares of those	9	er, all you need is an indicator to
10	siduals. That's all that we're trying to	10	differentiate between the first half of the
11	do.	11	year and the second half of the year, so we
	(12:15 P.M.)	12	simply use 1 and 2. The next one is All
	STAMP, Q.C.:	13	Years. This is the year parameter, and you'll
	Q. So Mr. Doherty -	14	notice that we're using - in the first one,
	R. DOHERT	15	it's 1993.25. That's because we're taking the
16	A. And the mathematics that support it drive from	16	average accident date for 1993, the first
17	that.	17	half. So the first half covers from January 1
	AMP, Q.C.:	18	to June 30th. June 30th, we consider to be
19	Q. Are we - to sort of try and get a	19	1993.5, it's half way through the year, but
20	understanding of what you're saying here, are	20	the average accident date for that first half
21	we trying to draw a line, a straight line, or	21	is at .25 . This allows us, actually - I don't
22	maybe several straight lines through this loss	22	know if I want to get into that. Probably
23	cost data or through the severity data, or	23	not. It's neat for actuaries, probably boring
24	through the frequency chart you showed us, and	24	for everybody else. Then we have a number of
	fit that line - that's the fitted line you're	25	other options that the analyst has available
	Page 110		Page 112
	talking about?	1	to him allowing him to choose scalars which
	. DOHERTY:	2	allow you to move up or down, or have one time
	A. That's right.	3	impacts for different periods, or you can add
	STAMP, Q.C.:	4	in different periods altogether. The way the
	Q. And then once you have that line, try to	5	analyst does that is through the first row
	determine if that line means anything?	6	underneath the titles where it's 0 's or 1's.
	R. DOHERTY:	7	So in this particular case, we have bodily
	A. That's right. It may help going through an	8	injury, its frequency. In this particular
	example. I'll take you through frequency for	9	model structure that's in front of you,
10	BI, as an example. So It think it's - you have	10	there's a 0 for seasonality, meaning that
11	to scroll down for this one or scroll up - I	11	seasonality was not included in this model.
12	can't remember. No, sorry, you have to go up.	12	All years is a 1. All the years was used in
	STAMP, Q.C.:	13	this model. Scalar 1 has a 1, so that
14	Q. Back to the first page, is it	14	particular parameter was used, and if we
	MR. DOHERT	15	scroll down, you can see that it's 0 for most
16	A. Yes, I think it would be maybe 124-119	16	of the years, but it becomes 1 at 2004-H2, and
17	maybe. Yes, perfect. Okay, so in this	17	that's because we've now - we believe that
18	structure that we have for our modelling	18	there's a second period where the underlying
19	process, you'll see in the box of data result	19	end itself or for the scalar there's been a
20	that we have, the first column is called Chart	20	shift in the curve. The next column is for
21	Periods. It's simply describing the period,	21	the trend associated with the post-2004. If
22	hether it's by accident year or half. The	22	re's no - there could be a shift in the
23	second column is Exclude the Datapoint Yes.	23	curve itself, but not necessarily a change in
24	Well, if you are going to exclude a datapoint	24	the slope of the line that we're drawing. If
25	because you feel it's an outlier after you've	25	there's no change in the slope, then we

analysis is around that residual. If you're building a model and you're able - our goal on the residuals is kind of two-fold. One is they should look like they're random; that is, when you look at them you can't tell if it's going to be up or down, and when you're looking down, you should see pluses and minuses exhibited randomly. There shouldn't be a number of residuals that are all positive and then they go all negative. That would indicate bias because your model is not showing residual as being random around 0 , they're too high and then they're too low. If I saw that, then I would say your model is missing something. Then the absolute value of the residuals themselves, in an ideal world, if the residuals are small, then you've explained a lot of what's going on in the data. The final column here is called the Selected Model. We do allow the analyst to superimpose a model in addition to the regression fit. We haven't used that in any of these, but if you can think about it, in a case where you have product reform and you believe that it's going to affect frequency,
it's going to cause a one time downward shift in frequency, you could build a model that has that built into it, and it would be different than the fitted model because the model wouldn't be able to fit it. It doesn't have any data that shows frequency is going to all of a sudden drop, but you could build one that does that. We have the capability of building it in here if that happens. Again for all of the Newfoundland commercial industry trend analysis that we've done with respect to this particular filing, the selected models were always the regression fits. So now let me go down a little bit. Okay, so we've identified the particular structure. If we could just slide down a little bit more, I'm going to focus a bit on the charts. Okay, so the regression - the periods that we selected then are two separate periods. We're looking at the whole 20 years, but we've bifurcated it into two periods. When we go through the exercise, the first thing, we have five sets of standard views that we have across all of the jurisdictions. We look at private passenger and commercial across all the
jurisdictions that we have. In some cases, we also look at motor cycles where we feel the industry has not enough experience in motor cycles. In all of those, we first look at what happens if you just do a regression across all the 20 years assuming no seasonality, but it's just a full on all the periods, what does that tell you. Then introduce seasonality. Then we have a standard one where we eliminate the first 10 accident years, so we're only focused on the latter 10 accident years, and we split it into two five year periods. This one is because what we found is typically if you're in a jurisdiction where there's a regulatory board that does their own analysis, they typically look at only the most recent 10 periods, and they tend to split it into five year periods. This gives us kind of a view of what the regulatory body might be looking at. The fourth one that we have is referred to as "Standard Reform", and it doesn't matter what jurisdiction you're in, if reforms have been introduced at different points in time, we will split up the period into when those

1 periods happened, and we found across all jurisdictions reforms generally across many coverages are very good indicator of changes in trends, and a lot of times it actually happens in coverages that you wouldn't expect, that there is a reform that happens that's supposed to only reflect bodily injury, and yet accident benefits or property damage, other changes that happen in there. It may be that, you know, those types of reforms impact claimant behaviour, I don't know. All I'm doing here is looking at the data and saying are you telling me something that has changed at about the same time the reform has happened. I can't even say for sure it was the reform that caused it. All I can say is something changed at that point in time and I want to reflect it, or see if I reflect it, whether or not it's statistically meaningful. Now in this particular case, there's a fifth standard one that we do is also trying to replicate what - if we know that there's a regulatory benchmark and we know what those results are, we try and replicate that using indemnity only. Typically, if there's a

Page 118
regulatory review, it's on indemnity plus expenses. We just try and overlay it, and I might get a chance to go into that a little bit. So in this particular case, after you've done that initial analysis, you may do a whole bunch of other options. You may split up in a few different periods. In this particular case, though, when we look at the result for frequency, just bifurcating the experience into two periods, pre and post 2004, we get, we feel, is a good fit. The first thing that we look at are some measures that are above, but I just want to show you the charts to start off with. The blue line is the actual result of frequency that we got from that first page that I talked about. I just put it in line instead of having all the bars and stuff like that. The chart on the top is actual and fitted. On the right, the chart above is actual and selected. Throughout this, those two are going to look exactly the same because the red line - the selected model and the regression fit model are the same. Below that, we have two residual charts that I'll talk to in a little bit as well. Those
residual charts become important as we try and analyze whether or not we believe that the model we have in place is legitimate and it's worthwhile to use going forward. So if we slide up, I just want to look at some of the other - sorry, the other way. This table down here is called "Regression Statistics", and below it there's a table that says, "Coefficient" and some other funny acronyms. The top part are output from regressions. Now again the regression itself is a mechanical exercise, and you can do it in Excel. You can actually do it from First Principles. If you've got two columns of data, you can come up with the regression coefficients that you're seeing here yourself. You can replicate this process because it is just mechanical. What we're trying to look at here is, first of all, going back to what our goal is, is there a relationship between, in this case, frequency and time, and is there a different relationship between frequency and time over different periods. Here we've got two different periods, a pre-2004 and post2004. When you look down below and it says a
coefficient, we've got options to have an intercept season, all years, and then the various scalars. You're only going to see coefficients on the ones that we selected we were actually modelling. So there's always going to be an intercept that's part of the model itself. You'll see there's nothing there for seasonality. It's because we didn't choose seasonality as a parameter. We did choose all years, we did choose scalar 1 and we did choose trend 1 . As we're looking at this, we would go up to the regression statistics and the first thing that we want to understand is does this regression model that we've put together actually explain changes in the data or explain the data.
17 STAMP, Q.C.:
Q. Just before you go there with that analysis, are you saying that you did a whole range of lines--fitted lines, different regression, taking all the years--taking this five-year, that five-year, and we only see one of these on this documentation here?
MR. DOHERTY:
A. Yes.

	Page 121	Page 123
	STAMP, Q.C.:	1 fitted lines that were created and that--there
	Q. So how did we get to the decision to put on	2 was an analysis done?
3	this chart the fitted line, which is the one	3 MR. DOHERT
	that you're showing us, which is reform-	4 A. Absolutely, yes.
5	fitted, I guess, and no seasonality--but there	5 STAMP, Q.C.:
6	are a whole bunch of other fitted lines that	6 Q. I mean, you are here with this fitted line--
7	you've created that aren't shown here?	7 MR. DOHERTY:
	MR. DOHERTY	8 A. Yes
	A. Yes. So, the overall process that we go	9 STAMP, Q.C.:
10	through on the trend analysis is that we first	10 Q. - showing us this fitted line and you think
11	do it internally, so there's an analyst who	11 this is the fitted line that is the one that
12	does the initial regression views, and they	12 you wish to use?
13	start with the standards, but then they will	13 MR. DOHERTY:
14	start building other models as they deem	14 A. Correct.
15	appropriate. After that, it comes to me. I	15 STAMP, Q.C.:
16	will review the work that was done and then I	16 Q. So you discarded a number of other fitted
17	will--if I feel it necessary, I will also look	17 lines. What was the process that led to their
18	at different periods. If I think that they	18 being discarded?
19	might have missed something or if I want to	19 (12:30 p.m.)
20	see what happens if you include or exclude, I	20 MR. DOHERTY
21	might include seasonality to see what the	21 A. Yeah. Typically, we would look at a number of
22	impact is, etcetera. Once that's done, we	22 these statistics. So, in comparing various
23	handle it off to our external partner, E\&Y.	23 models, one measure of fit is R squared and
24	For them to review, first they do technical	24 you'll see it's there. In this particular
25	checks to make sure everything is fine in what	25 case, it's suggesting that what you've put
	Page 122	Page 124
	we've actually done, and then they also come	together as your selection explains 64 percent
2	back with some views on the selections that we	of the variance that we're seeing. The
3	have, because we do end up with a model that	initial differences that you're seeing
4	we've selected. They may throw in some options	happening in the loss cost over time, you can
5	of their own. Once that's done, we get	explain 64 percent of it by having these two
6	together with E\&Y, we talk about the pros and	periods and not having any seasonality. The
7	cons of the various models that have been	trouble with the R squared measure is that
8	selected and then with ourselves and with E\&Y,	it's fine if you're only looking at one model.
9	we come up with what we would refer to as	If you're trying to compare models, R squared-
10	management's recommended trend. We would take	10 -it's a measure that the more parameters you
11	that to the Facility Association's Actuarial	11 throw at it, at a regression, the better that
12	Committee. Our Actuarial Committee is an	12 fit will be. So in this case, if I added six
13	advisory board. It's made up of senior	13 more periods and I added my shoe size as
14	actuaries from various members--I think it	14 another variable, I would get a better fit
15	consists of 10 actuaries, and we present to	15 through the R squared, even though I don't
16	them the results of our trend analysis for	16 think my shoe size has any bearing on
17	discussion and we get their feedback on it.	17 commercial loss cost, but I would probably see
18	we may end up, based on their feedback,	18 that R squared value increase just by adding
19	selecting a different model, or we may end up	19 that additional parameter. The adjusted R
20	with the same model that we	20 squared is another measure that adjusts for
	STAMP, Q.C.	21 the number of parameters that you're using.
22	Q. Before you go any further in that, though, Mr.	22 So in this case, we're using three parameters.
23	Doherty, I think what I was trying to ask you,	23 We're using all years, we're using a scale of
24	and I haven't asked it very well, is	24 one and we're using a trend one. So there's
25	address the extent to which there are other	25 three parameters that are in here. If I want

	Page 125		Page 127
	to compare the fit of this model to another		will start knocking out the parameters that
2	fit using this particular fit statistic, the R	2	have those high P values to see if by knocking
3	squared kind of view of the world, and it has	3	em out, you get to a result where all the
	a different number of parameters, I really	4	parameters you selected are ones that we
5	should be using the adjusted R squared. So we	5	believe are statistically significant and
6	use the adjusted R squared just as our main	6	nerally use a cut off of a P value of five
7	one. We'll go to that one first as opposed to	7	percent to help us to identify that. It
8	the R squared, just as a matter of course. The	8	doesn't mean that there is now only a five
9	other part that we would look at is not just	9	rcent chance you got it wrong. That's not
10	the R squared, but we would also look at what	10	how to interpret it. It just means that
11	we--we look at the one that's called P value	11	there's a five percent chance that the
12	in the table below. When you're doing a	12	rameter coefficient that you selected is
13	regression analysis, you are trying to address	13	actually being generated just by noise and
14	the residuals. When you're doing that fit,	14	it's not really true. Five percent means that
15	though, there's a chance that through that	15	you did 20 of these things, one of them,
16	calculation, you're going to come up with	16	you're going to get that result just by the
17	something that says I'm describing it, but	17	randomness, but in the other 19 it's going to
18	really--it's just describing the	18	be due to actual relationship, and that's why
19	randomness in the residuals themselves. It's	19	we cut it off. The five percent is a bit
20	not really describing a relationship. It's	20	arbitrary but it seems to be used quite often
21	misinterpreting the randomness as a	21	social sciences and I think
22	relationship, and so what we look at--and I	22	appropriate for us to adopt it here. We
23	think the preferred metric that Oliver Wyman	23	metimes veer off of that if we believe
24	is the T -statistic. The P value	24	something is going on that's not quite being
25	related to the T statistic, just changes it	25	picked up yet by the regression, but for the
	Page 126		Page 128
	to a percentage, and what we--what the P	1	most part, we use the five percent.
2	value tells you is that this is the		, Q.C.:
3	probability--the coefficient that you've	3	Q. Okay. So you were trying to get us from where
4	chosen or one of this size happened just	4	you are in this chart--what we're trying to do
5	through randomness, that there is really no	5	is get back to D-1, Column 15, and we're
6	relationship, this can just happen by chance.	6	working our way through this in this bodily
7	So when we're looking at the P values in our	7	injury component piece?
8	coefficients, we want to select P values that		DOHERTY
9	are low. That is, there's a low chance that	9	A. Yeah. So what we end up, then, is--on the
10	the relationship you've identified is because	10	frequency side, we ended up with a model,
11	of randomness and it's not really a	11	we're satisfied it's not--you know, it's not a
12	relationship at all. Through the exercise, we	12	great fit, 52 percent described by the
13	normally refer to a nul hypothesis, and the	13	regression, but it's the best we could do with
14	nul hypothesis that we measure ourselves	14	the limitations of the parameters and not
15	against in all of these things is that there	15	trying to over-parametize the model and have
16	is no relationship. The coefficient that	16	the impact due to that. There's another
17	you're actually seeking to identify is really	17	metric that's in here, it's called the
18	zero, and so if you've got a high P value,	18	Residuals Run Test, and for this one, it gets
19	that means there's a good chance that the	19	back to the idea that your residual should be
20	coefficient you've identified is in fact	20	balancing around zero, and if you've got all
21	caused by randomness and you should really not	21	of them above and then all of them below,
22	reject the idea that your coefficient is	22	given a number of points, you should be
23	really zero. There is no relationship. So we	23	switching back and forth. And so a Residuals
24	do look at P values, and if we've got trend	24	Run Test is just looking to see are you going
25	structures and we have a lot of P values, we	25	back and forth, are you flipping back and

	$\text { Page } 129$	Page 131
1	forth between positive and minus on your	1 between 2004-H1 and 2004-H2, at which time,
2	residuals in what looks like a random way, and	2 after that, frequencies were dropping, and
3	there's a test statistic for that, and in this	n, you know, is it because of the reforms
	particular case, the residual runs, based on	4 in 2004? I don't know, but we get a good fit
5	this model, we would say that they're random	5 when I have those two periods, that
6	and so we end up--now there were some	furcation, and so it may be that that's not
7	questions on whether or not for bodily injury	7 the cause, but nonetheless I see a change
8	there should be seasonality in the frequency.	8 there, and we do get a good fit.
9	We tested for that and we rejected it based on	9
10	the P value but in general, with seasonality--	10 Q. And insofar as we're looking to develop this
11	because we're only applying these things to	11 Column 15 trend factor, is this one of the
12	full-on accident years, seasonality allows you	12 influences to this factor?
13	to have kind of a saw action that you're	13 MR. DOHERTY:
14	reflecting that one half of the year performs	14 A. Sorry?
15	worse that the other half of the year and you	15 STAMP, Q
16	can reflect that difference. It typically	16 Q. Insofar as we're trying to develop the Column
17	does not have an impact on the slope of the	1715 factors in D-1, -
18	line itself, it just creates a better fit	18 MR. DOHERT
19	because you're accounting for the jaggedness,	19 A. Yes.
20	but the direction and the slope typically	20 STAMP, Q.C.
21	doesn't change. It doesn't mean it doesn't	21 Q. - is this frequency declining from that period
22	change ever, but typically it won't--it	22 one of the influences in that
23	doesn't have an impact, and in this particular	23 MR. DOHERT
	case, we tested for it and the parameter	24 A. Absolutely. So we actually have fitted
25	didn't satisfy our requirements so we rejected	25 values. The red line is actual fitted
	Page 130	Page 132
	it. So we ended up, for bodily injury, saying	frequencies, then, which will show--actually
2	that post the 2004 reform, frequencies for	go into our determine of the fitted loss costs
3	commercial vehicles in Newfoundland have been	3 going up. I do want to just touch briefly on
4	decreasing by 2.3 percent per year as our	the residual plot down below. So we take the
5	estimate for that trend parameter. Now if we	differences between the blue dots and the red
	go to the flip side on the severity -	dots--or the red line--and I apologize, this
	STAMP, Q.C.:	is an earlier version of our trend model, so
8	Q. Before you go to the severity, can we just	unfortunately in this version we didn't align
9	look at the chart again, your line, your	9 the period. So in the upper chart, it goes
10	fitted line for frequency, show us the chart,	10 from '93 to 2017, because we wanted to get
11	what you're talking about, what--this decline?	11 that forecast period. In the lower one it
	MR. DOHERTY:	12 goes from '93 to 2012. So you can't do a
13	Yes	13 direct comparison between the two. We have
	STAMP, Q.C.:	14 corrected
15	Q. So what have you done? What is this chart	15 STAMP, Q.C.:
16	revealing?	16 Q. The top one and the one below it don't line
	MR. DOHERTY	17 up, in other words?
18	A. So this is actually the result. The whole	18 MR. DOHERTY:
19	process of the regression is to come up with,	19 A. Yeah. They don't line up, exactly
20	really, a line. You can draw the line. And	20 STAMP, Q.C.:
21	because we have two different periods, you can	21 Q. Yeah.
22	see between 1993 and 2003--I guess it's 2004-	22 MR. DOHERTY:
23	H1, an upward sloping line. That is, through	23 A. You kind of have to lean back a little bit,
24	that period, we see frequencies increasing	24 but you will see that there's three or four
25	annually, and then there was a one-time drop	25 data points that are well above the zero line,

	Page 133		Page 135
	and that's where you might come back in after		that's not important to us, to--because we're
2	the analysis to say that may be what we would		looking at comparing different models which--
3	refer to as outliers. They're residuals that		all the time we're trying to compare the full
	are significantly different than our fitted	4	20 -year period. So relatively it's not
5	line, and at that point in time, the analyst	5	important to have, you know, the perfect fit
6	would--if he felt it necessary, if he felt	6	only for the period that we're interested in,
7	that they were outliers, he would want to test		that we think is going to influence our
8	whether or not they're influential outliers,	8	indication, but I want to emphasize, while we
	meaning that their inclusion is having a	9	looked at 20 years, it's--a fit on the most
10	significant impact on your fitted result. And	10	recent eight years is the one that's actually
11	so he would go in and one at a time, remove	11	used that has an influence on our indication.
12	them. Well, if you remove one of them, you		STAMP, Q.C.:
13	may have a new line because you know, it's a	13	Q. So if this were a straight line all the way
14	calculation and now you've removed one data	14	from '93 to ' 17 , for example, a single
15	point, you'll get a different calculation.	15	straight line, which would be fitting a single
16	Whether or not it's a better fit or not is--	16	line to all that--to all those periods, you
17	that's what you would want to analyze. In	17	could have done that, I guess?
18	this particular case, we were more interested,		MR. DOHERTY
19	for the purposes of our indications, of what		A. We did do that, yes.
20	happened after 2004, and so we--again, we		STAMP, Q.C.:
21	didn't spend a lot of time trying to do a	21	Q. All right, and I presume it wouldn't capture
22	perfect fit on the frequencies prior to 2004-	22	what sort of, to me, intuitively, seems like a
23	H1 because it wasn't going to influence our	23	bit of an upward trend for a while and then a
24	results, because we're not using that data	24	bit of a downward trend in frequency? That
25	point, even though in the two thousand and--	25	wouldn't be captured the same way in a single
	Page 134		Page 136
1	you know, we do have 10 accident years that		line?
2	we're showing. 2003 is before that reform		MR. DOHERTY:
3	period. We just didn't feel it was necessary		A. No. When you do the residual runs, you would-
4	to go through that exercise, but if you look		-the way it would fit--well, I mean, I'd have
5	at the residual plots post-2004, you can see		to go back and take a look at it, but yeah, I
6	they look kind of randomly scattered around		think it would be very challenging to fit that
7	the zero point and that again is what's		but--and obviously when we looked at it, it
8	reflected in our residual runs. It's also	8	wasn't as good a fit as this, so we accepted
9	reflected in the fit itself that the residuals	9	this one.
10	are pretty narrow around the values		STAMP, Q.C.:
11	themselves, so it's near around the zero.		Q. Okay.
12	Pre-2004, for whatever reason, the frequency		MR. DOHERTY:
13	was significantly--appears to be significantly	13	A. So then if we look at the severity, I think
14	more volatile. You get significantly more	14	you have to go--like scroll down to the next
15	stuff going on in the residual plot. Now our	15	page, like 21 or 22.
16	squared value that we talked about is a		STAMP, Q.C.:
17	measure of fit, measures this entire fit. Now	17	Q. The couple of pages there.
18	I could get a much better fit if I completely		(12:45 p.m.)
19	excluded the 2004-H1 and prior periods. I		MR. DOHERTY:
20	would get the same sloping line, it's just	20	A. So this top part, it's the same thing and the
21	that now I'm not trying to fit that very bumpy	21	same structure that you had seen for the
22	stuff and so my R squared value would go way	22	frequency, except now in those columns of
23	up, I'd be describing much more, it happens,	23	actual values, it's the severity values. Now
24	because my residuals are much smaller post	24	here we included the same periods. So one of
25	that. We just didn't do it because it's--	25	the concerns you would typically have is that

Page 139
if you are modelling frequency and severity separately and you choose different periods, there may be a relationship between frequency and severity that is causing a problem when you're putting the two pieces together, and we're very cognizant of that. So we would typically only choose different periods if we felt that there was really something underlying going on differently, and we would still, even then, try to make sure that we're aligning them somehow. So if you think about it in terms of we had frequency two different periods, if we thought something was happening in severity in that second period, we might split up the second period, but we wouldn't try to make two periods that didn't overlap properly with the frequency. We try and avoid that because of concern that there is some sort of relationship or correlation between frequency and severity, that we might be messing up or not appropriately accounting if we have different periods. Now I want to scroll down a little bit because in this particular case, we did exclude a data point, we excluded 11-2. So again, on the frequency
side, we identified some things that could potentially have been outliers that you might want to analyze. In this particular case, when we did the original analysis, the analyst would have done it with all the data points and then once he or she did the results, they identified that through their analysis of the residuals, one was significantly outside--and maybe we'll just scroll down and take a look. The results here aren't prior to the exclusion. Keep going down, I want to just go down to the next one. So you can see to the right there's a blue data point that's well above the line. Now there's a whole bunch of them in the pre-2004 period that are also above the line, but the analyst again was focused on what's happening post-2004 and there was a significant one for 2011-H2 that was deemed to be worthy of analysis as a potential outlier, that is having an influence on the results that maybe it shouldn't ought to be allowed to have. And so they excluded it and tested it, you get a different result, and so we deem that as an influential outlier, and it should be excluded. The result of the
slope of the line after 2004 by excluding this data point is actually--reduces the trend. I believe it was over eight percent if you included that point, and it's--I think it was 6.6 percent after the trend.

STAMP, Q.C.:
Q. I'm sorry. I didn't catch that, Mr. Doherty, just -
MR. DOHERTY:
A. I think it's something around eight percent prior to--when you included that data point. When you remove it, it comes down to 6.6. Whatever the value is, we'll see it STAMP, Q.C.:
Q. So the effect of the exclusion of that single data point lowered or raised trend?
MR. DOHERTY:
A. It reduced the trend.

STAMP, Q.C.:
Q. And so what did that--how did that impact indications?
MR. DOHERTY:
A. All else being equal, it would create an indication that's lower than if you had included that data point.
Q. Okay. So by that single data point being left out, Facility's indications are lower?
MR. DOHERTY:
A. Yes. Okay, I want to slide up because I do want to look at the output of this. Okay, so first of all, the R squared, it's not a great fit, it's only 35 percent of--the variance that we're seeing in the severity is actually explained, and it's because there's a lot of volatility in the annual severity. I also want to draw your attention to the all-years factor of P value, it's 72 or almost 73 percent. Normal circumstances, we would say you need to reject that parameter because the test says it's not--the coefficient that you've picked is caused by randomness in the residuals themselves, it's not actually different than zero. But if you actually look at the coefficient, it's almost zero anyway. So in fact, the reason we decided to leave this one in--and we would have removed it, but the reason we decided in is because it's effectively zero already. So by discarding it you make it zero; it's effectively zero

	Page 141	Page 143	
	already. And if you slide down and look at		MR. DOHERTY:
2	the chart, you can see that as a straight flat		A. Yeah?
	line pre-2004. There's a slight decline		STAMP, Q.C.
	because we're saying there's a slight lowering	4	Q. - are they actual events, actual circumstances
5	trend if you leave that parameter in, but it's	5	that--is this history?
6	barely noticeable, and again it's pre-2004, so		MR. DOHERTY
7	it wasn't really important to our analysis,	7	A. Yeah. This is the history, it's--and the blue
8	but looking at it now, I would say just from a	8	dots represent the difference between the dot
9	process standpoint, we should have just	9	ou would see on the fitted result, the
10	knocked that one out and we should have just	10	tual result itself--the difference between
11	made it zero as opposed to almost zero. And	11	that and the red line for that dot. So again,
12	again, if you look at the residual plot down	12	he residual, it's the difference between
13	below, now this one is interesting because	13	actual and fitted. So our goal ideally is
14	you'll see that there's a lot pre-2004 where	14	that you'd be able to build a model where the
15	there's a lot of potential outliers above, not	15	siduals are very small, they're random
16	so many below. Like if you look at the scale	16	around zero. If you've done that, you've
17	on the right, it says plus or minus--well, the	17	explained a lot of the variance that you're
18	lower scale is minus 30,000 and the upper is	18	ctually seeing, and maybe something happened
19	40,000 , but if you focus on maybe things being	19	the past, that you could introduce some
20	plus or minus 20,000 , there's a number of	20	other variable that you know about that can
21	points that--where the residuals are more than	21	lp explain it. I don't know what that might
22	20,000 outside of it, but they all seem to be	22	be, but if you could, maybe that would help to
23	up, and so when we're doing an analysis on	23	xplain the model. And certainly one of the
24	this, the worry is if you start knocking out a	24	ncerns we always have doing these types of
25	whole bunch of outliers, you could end up	25	analyses is what's called parameter omission
	Page 142		Page 144
1	moving a big chunk of the data, and when you		bias. If there is an additional parameter
2	remove a big chunk of the data, then our	2	that you're omitting because you don't know it
3	challenge is are you really representing the	3	or it's unobservable, and those are the worst
4	data or are you ignoring the fact that there's	4	ones, what you're seeing as residuals are
5	a lot of volatility here? And again, because	5	actually differences that could be explained
6	this didn't have an influence on our trend		by this other data that you don't have
7	post-2004, we ignored it--but even if they	7	available for you. I know a lot of--you know,
8	didn't, I would be challenged if my analyst	8	in the financial world they worry a lot about
9	came to me and said I've decided to knock out		that stuff and that's why they--in their
10	those four earlier data points, I would say,	10	regression models, they bring out all kinds of
11	you know what, there's just a lot of	11	stuff to satisfy themselves that they've
12	volatility, I don't know what it is, I think	12	reduced the risk of omission error as much as
13	you might be biasing the selection of how it	13	possible, but I'm--you know, I'm fine with
14	aligns because you've knocked out four high	14	where we are and the data and the approach
15	ones but you haven't knocked out any low ones.	15	that we've taken on this. So we end up then
16	So you're pushing the severity line down.	16	with--again, like with the frequency, we did a
17	Even though it's a flat line, you'd be pushing	17	number of models using different time periods
18	it down relative to where I think it should	18	and this was the one that we think makes
19	be because it seemed to be pre-2004 there were	19	ense, and when we look at the data, to us it
20	a number of periods where you had these what	20	es sense that for whatever reason,
21	appear to be very high levels of severity for	21	frequency pre-2004 seemed to be flat but quite
22	whatever reason.	22	volatile and post-2004, it's been increasing
	MP, Q.C.:	23	and perhaps not quite as volatile as what it
24	This severity residuals plot, those blue		was previously.
25	boxes, -		STAMP, Q.C.:

```
Q. So you have now looked at the frequency and
severity for bodily injury for the trending
purposes. Does this bring you back to the
first--or maybe it's the--the first page of
the -
MR. DOHERTY:
A. Yeah. So I think we have to go up to 118 , maybe? Yeah. So those red lines that we had are--the data points that support it are represented as selected frequency of that column, the selected severity of that column and then the selected loss cost and we also show on here the actual values so you can see the comparison for yourself. We replicate the fitted and actual charts for each of frequency, severity, and then when we get to loss cost, the fitted loss cost is just the frequency multiplied by the severity, and so if you slide down--I think maybe just before we slide down, and again, you know, I'm satisfied with the frequency, I'm satisfied with the severity. They're going in two different directions, but to me that's what's reflected in the data itself. So if we slide down and just look at the loss cost chart.
```

Too far; there you go. So if you put those two pieces together, then you get this result that again you have two periods. It's a bit more of a challenge, I think, to see on the loss cost. You know, there's pre-2004 and then you've got this post-2004 period. There's a significant amount of volatility in loss cost. That volatility post-2004 is driven by the severity, not so much the frequency. Pre-2004 I think there is both frequency and severity that were driving all of those changes, and I think that if you're just looking at loss cost, you would be really challenged to try and identify periods without doing a lot of work. If I were looking at just the loss cost, I might think there is potentially one period that ended in '99 and then something happened after ' 99 or maybe-I'm not sure how I would interpret that if I was just looking at loss cost. But the reason, again, we look at frequency and severity separately is again the worry that through--you get omission bias, and so by only looking at the loss cost but not looking at the underlying changes in claim frequency and
severity, you're kind of missing a potential parameter in there. Now there's a large concern with collinearity between frequency and severity. The regression modelling maybe isn't the right type of modelling to try and capture that. You might want to look at some other type of modelling, maybe generalized linear regression or something else, but I'm satisfied it's not an issue, I'm satisfied with the results that we have and I'm satisfied with the end result. Here we're showing a bodily injury increase post-2004 of 4.4 percent annually. Now we did tests, and the one of the other tests that we do--and I don't think I mentioned but through all of this modelling, we always do--what we kind of do is a walkback, because one of the things we're interested in is certainly have the trends changed, right? So in here we bifurcated between pre- and post-2004 and just looking at the loss cost, I think there was a change not so much maybe in the slope--the slopes look kind of similar although they're not exactly the same, but there is a one-time drop down--but maybe post-2004, in that eight-
year period we have after that, maybe the trend has changed again. Maybe instead of having one period that has a 4.4, maybe it went down or went up, and so we do what we call a walkback where we would--we don't like to do anything more than three years, because I think once you get three years, you're dealing with six data points, you're really introducing a lot of variance due to noise and it's very hard to model that few data points. So we would typically start with five. Now in this case, we were challenged because we only had a period that was eight long, so--we started with four, and our goal then is we would just bifurcate that period, that eightyear period. We said okay, what if there's two periods in here and we're not capturing that change? And so we tested for that and it came back and said of course, I can give you those parameters, I can tell you the slope is this and the slope is that, but if you look at the results, it's not a valid fit. You're modelling noise, you're not modelling what's going on, and so we rejected that both for frequency and severity. That doesn't mean

	$\text { Page } 149$		Page 151
	that there isn't an underlying change that's	1	determination on what the potential impact of
	happening in 2009 or 2010 or 2011. That	2	t is. Now I work for the Facility
3	hasn't been long enough to manifest itself,	3	Association and I work on behalf of management
	and part of our exercise next time certainly	4	in going through these exercises, and my view
5	is to continue doing that test because we want	5	with respect to the benchmarking trends that
6	to see--the biggest challenge we face is has	6	are produced by--and publicized by the PUB in
7	the underlying trends changed during our	7	Newfoundland and referenced in their filing
8	periods that we've selected, and in this case	8	guidelines, there's not enough information in
	we looked at it but we didn't find evidence of	9	the directives that are posted for me to be
10	that.	10	able to take responsibility for that work if I
	STAMP, Q.C.	11	were to choose to use it as part of my work
12	Q. So how is this information then that you've--	12	product. However, Oliver Wyman does produce a
13	the trend model you've come up with, the	13	report that provides some detail into their
14	information, the data you've generated, how	14	process of determining those trends. Again,
15	does that find its way back to--in what way	15	my view, there's not enough information
16	does it get translated back to Column 15?	16	that's provided in there for me to be able to
	MR. DOHERTY:	17	take ownership of that, so I would not take
18	A. So this final column of Fitted Loss Costs, so	18	responsibility of that work, and as such, I
19	you see--and again, I'll look at 2012, so we	19	need to provide management with a view of what
20	have that $\$ 30.06$ as a fitted value for	20	does it mean and what would you do if you did
21	accident year 2012-H1--or-H2, and then-H1 was	21	it. So we go through this exercise, and I
22	\$313.19 and again, we wait those two based on	22	would do it probably anyway, but nonetheless
23	the exposures of those two periods to come up	23	in my view there's not enough information
24	with a total loss cost for the accident year	24	provided in the report for me to be able to
25	2012, and when you go back to D-5--I think	25	rely on the trends that have come out of
	Page 150		Page 152
1	you're looking at Page 161. Let me scroll		Oliver Wyman's review and use it as my work
2	down a little bit more to the model loss cost.	2	and take responsibility for it.
3	You'll see accident 2012 there. The fitted		AMP, Q.C.:
4	loss cost is $\$ 316.76$. That's a weighted	4	Q. And what kind of information is it you're
5	average of the two values that we had for the	5	looking for to assist you to do that?
6	two halves.		DOHERTY
	STAMP, Q.C.	7	A. I would be looking for the fits statistics,
8	Q. Now what I'd like you to do, Mr. Doherty, if	8	the P values and determination of the
9	you can, is--this is the process you followed,	9	coefficients that they've identified, these
10	Facility followed, and I gather Oliver Wyman	10	trend factors that they've identified and that
11	followed a different kind of process?	11	they've selected, how well do they describe
	00 p.m.)	12	the data. Now, the other part of it is I want
	R. DOHERTY:	13	to be able to apply those factors in a way
14	A. Yeah. So maybe just to predicate a little	14	that I understand relative to my review. My
15	bit, Canadian Institute of Actuaries'	15	indication structure has ten accident years
16	Standards of Practice, there's a section	16	and I need to be able to take those ten
17	called 1600, it refers to another person's	17	accident years and the claims that I currently
18	work, speaks to the actuary's choice of using	18	estimate for those ten accident years and
19	another person's work and either taking	19	project them forward to that future period to
20	responsibility for it or not taking	20	make it look as if those events underlying the
21	responsibility for it, and you can do that	21	claims occurred in that future period. So I
22	through an exercise like this. If you're not	22	need to have factors that go back at least to
23	going to take responsibility for the work, but	23	accident year 2003, so that I can bring those
24	you're going to use it, you need to make the	24	forward and at least look at them, even though
25	users aware of that so that they can make a	25	I may not decide to use them or give them any

Page 153	Page 155
weight in my process. The presentation of the	1 them.
nd parameters that are estimated through	2 MS. GLYNN
the process in Oliver Wyman's Report doesn't	3 Q. Do you have the RFI?
really tell me specifically what periods I can	4 MR . JOHNS
apply those to. As I understand it, I can at	5 Q. I think it would also be Consent 4, I believe.
least apply those to the most recent five exit	6 MS .
ars of experience, but I'm not sure it's	7 Q. Well, we haven't entered any -
meant to be applied to periods prior to that	8 MR. JOHNSON:
it's a bit of a challenge for me then to	9 Q. Oh, I'm sorry
10 rely on those on that respect.	10 STAMP, Q.C
11 STAMP, Q.C.:	11 Q. Are you looking at the questions and
12 Q. Mr. Doherty, before you get into that, is	12 responses, the responses in particular that -
13 there an implication for the indemnity only	13
14 and then indemnity plus in the two analysis?	14 A. No, this would be Oliver Wyman's actual
15 MR. DOHERTY:	15 report. The Consumer Advocate requested it, I
16 A. Potentially and certainly I believe that was	16
17 addressed in Oliver Wyman's report. Their	17 STAMP, Q.C
18 view is that the adjudication expenses, both	18 Q. 16 of May, 2014? Oh, I'm sorry, you're
19 internal to a company and external	19 looking at the benchmark discussion?
20 company, when you put that altogether for the	20 MR. DO
21 industry, they're probably moving aligned with	21 A. No, I think that's the revised final report.
22 the indemnification. That may be the case, I	22 No, it's the first request for information
23 don't know, I've not independently tested	23 that the Consumer Advocate had for Oliver
24 that. For me, it's not really relevant	24 Wyman.
25 because I'm only looking at indemnity facility	25 MR. JOHNSON:
Page 154	Page 156
association's cost structure with respect to	1 Q. CA PUB 1. It's also Consent 4 if you went to
2 the servicing carriers is only that the cost	go there.
3 structure is different than the industry and	3 MR. DOHERTY:
4 so, a trend analysis that includes the	A. Yeah, I think it's CA 01. So what I would
5 expenses, if I'm going to do it, I'm not going	like to do is just kind of walk through the
6 to do it with the expenses, it doesn't apply	report and identify a few things that, you
to me. I can't determine whether or not the	know, is different, highlight some differences
8 inclusion of expenses would have an impact or	in the way that we approach things and where,
9 not. I would have to do a separate analysis	you know, some thoughts for consideration on
10 for that.	10 it. So if you move down to page 2, the first
11 STAMP,	11 part of Oliver Wyman's report, they talk about
12 Q. All right. So you were going to, I think,	12 the process and why they're doing this. They
13 take a look at what Oliver Wyman has, the	13 emphasize in this third paragraph that past
14 approach that they took?	14 trend rates should reflect the underlying
15 MR. DOHERTY:	15 trend patterns that occurred during the
16 A. Yes, so if we can maybe bring up Oliver	16 experience period and as we talked about, I
17 Wyman's Selected Trend Rate Report, I believe	17 fully agree with that, the experience period
18 it was provided to the Consumer Advocate at	18 that we're actually going to be using is the
19 one of their information requests.	19 most recent five and that's why we've focused
20 STAMP, Q.C.:	20 on that period, but we are--we didn't pull
21 Q. I'm sorry, what did you say just then, I	21 information for the full ten accident years
22 didn't catch what you said.	22 and that's why we felt it was important, I
23 MR. DOHERTY:	23 think it's important anyway but just look at
24 A. Sorry, the Consumer Advocate requested Oliver	24 the full twenty years, but we believe that the
25 Wyman's report. I believe it was provided to	25 trends that we selected reflect the most

	Pag
	recent five year experience period. It, in
2	fact, reflects an eight-year period, but it
3	also applies to the most recent five years,
	and I also agree that in the next paragraph
5	that actual judgment is applied. At the
6	ttom of that paragraph, the paragraph starts
7	with the identification of other line trend
8	patterns, but the last sentence, I think, is
9	important. Starting the third from the bottom
10	line, "And without certain data points that
11	are considered to be statistical outliers and
12	over time periods that are longer than the
13	experienced period as a means of increasing
14	stability reliability of the data analyzed."
15	Clearly the latter part, we would certainly
16	agree with. We believe that you should look
17	at the entire data set that's available to you
18	and test whether or not trends had changed
19	over time. So we're fine with that, and in
20	principle I agree that certain data points
21	that are considered to be statistical outliers
22	should be tested to see whether or not they're
23	uential outliers and whether or not then
	they should be excluded from your model.
25 STAMP, Q.C.:	

data, we use the same data, except we did indemnity, not including the allocated loss adjusting expense and the ULAE (phonetic) factor. They do go on to say that the derive annual loss rates based on a regression model. Throughout their final report and in comparing to what we do, there does seem to be an implication that when you're doing these regression fits, you should try and estimate your parameter for the trend by looking at a whole bunch of different windows of data in your period. I don't subscribe to that view. I believe if you think that there is a trend that covers a period, you use all the data in the period to determine what that parameter is. I would not recommend that you look at the period and then take a subset of it, come up with a parameter estimate for that, take another subset of the same data, come up with a parameter estimate for that and then average the two parameter estimates that you have to come with your final estimate. I believe the strength in the regression process itself of linear least squares of coming up with one estimate of that parameter that in the case of
Q. So is the decision to identify an outlier made after the testing is done or before the testing is done?
(1:14 p.m.)
MR. DOHERTY:
A. Well our approach is after the testing is done because again, our view is it's a residual exercise and so I can't determine a residual before I fit the line, there's no definition of a residual because a residual is the difference between the actual value and my fitted value. So if I don't have a fitted value, I have no residual. So I would suggest I would be challenged in having predetermined statistical outliers if I haven't done my analysis. I think that's the cart before the horse, you fit your values and then you determine, doing an analysis of the regression itself and the statistics that come out and particularly of the residuals and determine whether or not you feel there may be an outlier and then you test to see whether or not again that outlier is influential to your outcome. So if we scroll down a little bit more, this first paragraph they describe the

Page 158
using a regression, it superior to then trying to come up with different estimates for that same parameter using different periods of time. Much in the report and I'll touch on this a little bit later, you know, looking at different snap shots within periods and saying that you get a different parameter estimate and therefore, things are volatile, I think that's a bit misleading. If I have two different data sets, but within the same period, I will come up with two different estimates for that, just like if you ask me to determine the average height of the people in this room and I decide only to use some of the people, I come up with an estimate and then I take another group of people and come up with another average, I would be surprised if they were the same. I'm just measuring data and averages are just, I would take all your heights and divide by the number of people I took the height and I would take another average. That doesn't mean that the actual underlying average height in the room is somehow volatile, it just means that I've decided to take two samples to come up with my

	Page 161		Page 163
	average. My preference, actually, would be to		of them together, they come up with a good
2	take a larger sample and come up with my	2	estimate and that's the idea behind the sample
3	sample that way. If you think in terms of	3	ize. Get a bigger sample size and you reduce
	estimating these parameters, I didn't use, I	4	your variation of error in your estimate of
5	think, average is an easy way to kind of think		that parameter. So to take smaller
6	about it, if we're trying to take or estimate		subsections of a period where I'm saying I got
7	the average height in this building and we've	7	a parameter I believe that is going to stay
8	decided that we can do that by taking a sample	8	constant or I'm trying to estimate over this
	of people's heights in this room and then use	9	eight-year period, I don't estimate that
10	that as an estimate for the average height for	10	parameter by taking a bunch of small averages
11	the entire building. If I wanted to use a	11	of periods in between that and then average
12	smaller sample than this room and say I'm	12	these things together. I just take the full
13	going to measure you first and come up with an	13	ten-year period because that's my biggest
14	average, then I'm going to measure you and	14	sample size that I have available to me. Now,
15	come up with an average, but before I do that,	15	again, if you do believe that the underlying
16	I'm going to decide not to take into account	16	parameter itself has changed, that the trend
17	the really tall people, the really short	17	has changed, then identify the period where
18	people. I'm not sure that's the best way to	18	you think it has changed and test to see
19	come up with that initial estimate. It is a	19	whether or not there is statistical support
20	way, but I don't think it's the best way. I	20	that there's a new parameter and that
21	would rather just take the average of everyone	21	arameter is now going forward. If there's
22	in this room and then say that's my estimate	22	not statistical support for it, you should
23	and I think it's reasonable to assume the rest	23	reject it and say there's just one parameter
	of the building kind of looks like this	24	for a trend over that whole period.
25	population. If you reduce the size of the		STAMP
	Page 162		Page 164
	sample and you're trying to estimate an	1	Q. So how does this discussion, how does this
2	overall population average, the smaller the	2	translate into your review of the Oliver Wyman
3	sample size, the bigger the error is going to	3	approach that we're looking at here? You're
4	be between your estimate of the average and	4	saying you take a sample period and a subset
5	the ultimate average. So if you think about	5	of that, are you speaking specifically to what
6	my example here, if we take half the rooms, w	6	you think they have done in their approach?
7	call around to half the rooms of this		DOHERTY:
8	building, and we ask them to do the same thing	8	My understanding of the approach, the end
9	that I'm doing here, but for half of the rooms	9	goal, I believe we're trying to find a trend
10	that we ask, they do it the same way, measure	10	parameter that applies to my experience
11	everybody in the room and take an average and	11	period; particularly the five years that I'm
12	come up with an average height. But for the	12	using in my indication of the accident years
13	other half we say only do that for half the	13	2008 to 2012. When I did my analysis on
14	people in the room. Well, if you took the two	14	bodily injury, I had two periods, pre and post
15	sets of rooms then, the one that--both of	15	2004. Obviously the trend parameter post 2004
16	them, I believe, would come up in total with	16	is the only one that influences my indication
17	an average that's pretty close to the overall	17	because that's the only one that applies after
18	average of the building. The problem is the	18	2008. The trend parameter that has been
19	ones that only used half the size for their	19	estimated by Oliver Wyman is not based
20	sample, when you look at them individually and	20	strictly on that same eight-year period that I
21	compare that to the overall average, they're	21	have. They did a number of different
22	going to be much different overall than the	22	measures, but their goal is to try and
23	at use the same room. The variance	23	estimate that same parameter, the parameter
24	ween their estimate is going to be wider,	24	that applies to the most recent five years.
25	even though they may come up, when you put all	25	They've just taken a different approach and

	Page 165		Page 167
	it's not one that I think leads to the best	1	value a year prior. So if you're looking at
2	estimate of that parameter. And maybe if we	2	$2012-\mathrm{H} 2$, you would look at the change from
3	go down a little bit further, let's go to the		2011-H2 to 2012-H2 and you're looking at the
	time periods we consider, I think it's on the		change in that value over that period and they
5	next page. Keep going down please, yeah, next	5	look at all the changes, as I understand it,
6	page. There we go. So the approach obviously	6	and remove the ones that have the highest and
7	we have, I don't have a pre-determined period	7	lowest. Now the first thing when I read that,
8	in mind, I will look at the whole period but	8	the first thing I go to is if I got a straight
9	then I have some standard views, usually based	9	line and most of my data is on that line, but
10	on reform, but other than that one where we	10	I have a high value up here, that's a big
11	have a standard that's really trying to	11	change, but the next period is also a big
12	replicate what we think the regulator review	12	change, it's a big change in the other way,
13	would look like, we don't have a pre-	13	but it's just bringing you back to the line.
14	determined idea of where the parameter might	14	So one data point that had a big change can
15	change, where trends might change over time,	15	actually knock out two data points because the
16	and so going into the process, when I look and	16	one immediately after is automatically
17	take a step back and I look at the overall	17	potentially going to be the one with the
18	process that is used as I understand it by	18	biggest decrease and so it's also going to be
19	Oliver Wyman where you look at a specific ten-	19	knocked out. And in fact if you look at the
20	year period, then you look at a subset of	20	results of one of the five-year periods Oliver
21	that, being a five-year period, then you move	21	yman used for bodily injury, I believe that
22	back six months, you have another ten-year	22	xact thing happened where the high and the
23	period which in some ways is a subset of the	23	low are both taken out because of the high of
24	first one, there's some overlap there	24	one of the two periods and that will be in one
25	certainly, and then you take a subset of that	25	of the exhibits that I bring to your attention
	Page 166		Page 168
	and you come up with regressions. All of	1	a little bit later on.
2	those regressions are trying to come up with	2	Now the process, I think the biggest
3	the parameter value and then in addition to	3	benefit of this process from somebody who has
4	that, they're not just looking at the periods,	4	built actuarial practices in a number of
5	but before they start the analysis, they've	5	organizations, it is very efficient if we
6	already excluded what they view as statistical	6	believed this process was good at determining
7	outliers, being highs and lows and highs and	7	the trend parameters. This is a fantastic
8	lows being with reference to the loss cost	8	process in terms of efficiency. I can have my
9	being a high value or a low value, I think you	9	guys build this process, it would probably
10	can appreciate that before you start, if in	10	take a couple of days, but I'm sure that our
11	fact things are going up, your high values are	11	analysis would end up taking 15 or 20 minutes
12	more likely to come from over here and your	12	to do most of the jurisdictions that we work
13	low values are coming from over there, so if	13	in because it's very mechanical. You identify
14	you exclude them, starting off with I'm not	14	the outliers upfront, you do four regressions,
15	sure that's a great thing, likewise if your	15	you get the results out and average it against
16	trend, underlying trend is going down and your	16	the one you had before. That's great, it's
17	lows are probably at this end and your highs	17	very efficient from a resource standpoint.
18	are probably at that end, you're basically	18	The issue that I have is that it's not
19	removing data points, you're reducing your	19	effective, I believe, at determining what the
20	sample size before you even begin. And I'm	20	proper parameter is because you're not doing
21	not sure necessarily if that's appropriate.	21	any analysis to determine whether or not any
22	Now the other nuance in the outlier removal at	22	of the parameters that you've actually
23	as I understand it, is that	23	determined through the regression is
24	outliers are identified not by their absolute	24	statistically valid and if you can't do that,
25	value, but by their change relative to that	25	then I don't think you come up with a good

	Page 173	Page 175
	down to 4.2, so we'll probably accept it. The	1 experience between the first and second half
	issue is that we didn't use that period. So,	2 of the year, based on the loss experience we
3	s like a different model all together	3 find this to be reasonable". Is that a
	That's not the period that we selected. And	4 seasonality issue?
5	as far as I know, 2005 to 2012 was not one the	5 MR. DOHERTY:
6	periods that Oliver Wyman used. It's not a	6 A. That would be seasonality. I'm not sure what
	ten-year period, it's not a five-year period.	7 coverage that it referring.
8	It doesn't seem to encompass the periods that	8 STAMP, Q.C.:
	they actually chose. So, while they	9 Q. That's property damage.
10	introduced that into the report, I'm not	10 MR. DOHERTY:
11	really sure how that relates to their	11 A. Property damage, okay.
12	ection and it certainly doesn't relate to	12 STAMP, Q.C.:
13	our selection.	13 Q. So, but I think the indication was that you
	STAMP, Q.C.	14 did not find include seasonality in the bodily
15	Q. Well, I think we're going to come to that a	15 injury component and I think Oliver Wyman
16	little bit later, in any event. But in the	16 suggested that they saw seasonality.
17	analysis that you did, as you say, bodily	17 MR. DOHERTY:
18	injury, you tested for it.	18 A. Apparently in the period where they did 2005
	R. DOHER	19 to 2012.
	A. Yes.	20 STAMP, Q.C.:
	AMP, Q.	21 Q. Well, we'll come to that a little bit later
22	Q. Didn't find seasonality to be evident.	22 again. In Accident Benefits, the report of
23	R. DOHERTY:	23 Oliver Wyman, on that point, on that coverage
24	A. Yes	24 discussion, it's in the second bullet, says
25	STAMP, Q.C.:	25 "FA does not include a parameter to take into
	Page 174	Page 176
1	Q. And so you excluded that parameter	1 the consideration the difference in the loss
	MR. DOHERTY	2 experience between the first and second half
3	A. Correct.	3 of the year. Based on the loss experience we
	STAMP, Q.C.:	4 find this to be reasonable". Is that a
5	Q. Now, in property damage, for example, was	5 suggestion then that FA did not take into
6	there a different conclusion?	6 account in Accident Benefits seasonality?
	MR. DOHERTY:	7 MR. DOHERTY:
8	A. There may have been, I'd have to go back and	8 A. I would believe so; I'd have to confirm that.
	take a look. I'm sure that there are some	9 STAMP, Q.C.:
10	coverages where it is evident and some where	10 Q. No, but that's what this appears to be saying.
11	s not.	11 MR. DOHERTY:
	STAMP, Q.C.	12 A. Yeah.
13	Q. You'd have to go back to Appendix B to find	13 STAMP, Q.C.:
4	that, would	14 Q. I'm just trying to understand what this
	MR. DOHERTY:	15 comment--so, the comment from Oliver Wyman in
16	A. Yes	16 his report is that in some coverages you
	STAMP, Q.C.	17 included seasonality and in some coverage you
18	Q. Okay. In the Oliver Wyman report, and I'll	18 rejected seasonality.
19	just--without bringing it up for a moment--	19 MR. DOHERTY:
0	I'll just refer to the property damage	20 A. Correct.
21	discussion in the Oliver Wyman report with	21 STAMP, Q.C.:
22	respect to the discussion on your work, I	22 Q. That's true, is it?
23	guess. The second bullet in Property Damage	23 MR. DOHERTY:
4	says "FA includes a parameter to take into	24 A. Yeah.
25	consideration the difference in the loss	25 STAMP, Q.C.:

	Page 185
1	period they have available as presented in
2	their report, but that's not what they did.
3	So, I don't know why they--if there's no 4
5	reform, why they used a ten-year period
instead of using the full 15-year period, they	
6	don't think the parameter--they don't think
7	the trend parameter itself has changed over
8	that period. And if they do believe it
9	changed, when did it change? And which of
10	these ten or five year periods reflects when it changed and what was the value before the
12	change and after the change? Those are the 13
types of questions I would have based on this.	
14	STAMP, Q.C.:
15	Q. So, can you say whether Oliver Wyman tested
for the impact of reform?	
17	MR. DOHERTY:
18	A. I don't--I assume they did some sort of test
19	because they have in here asserted that there
20	was no impact.
21	STAMP, Q.C.:
22	Q. Okay. Well, I just want to come back to the
23	discussion on the time periods which you had
24	just been referring to a moment ago in the
25	Oliver Wyman Ow CA 1, I guess, it says "In our

judgment a ten-year period is generally a reasonable time period for determining the underlying trend rates for the bodily injury and accident benefits coverages." And then they say five years for some other features. Just go to the second paragraph following that, can you bring that up? Do you have that in front of you?
MR. DOHERTY:
A. I'm not driving.

STAMP, Q.C.:
Q. I'm looking for the Oliver Wyman Report, it's CA OW 1 response.
MS. GLYNN:
Q. Yes.

MR. DOHERTY:
A. Yes, it's that report, I'm not sure--what page are you looking at?
STAMP, Q.C.:
Q. I'm on page 4 of that report.

MR. DOHERTY:
A. You might have to go down one more because they start -
STAMP, Q.C.:
Q. There you go. So I'm just referring to the

MR. DOHERTY:

A. Yes, that's what it says.

STAMP, Q.C.:
Q. Is that what you see that he's saying?

MR. DOHERTY:
A. Yes.

STAMP, Q.C.:
Q. And for property damages it looks to me like it's a different period, five years.
MR. DOHERTY:
A. Yes.

STAMP, Q.C.:
Q. What's being said in the next paragraph?

MR. DOHERTY:
A. As I understand the approach, they would estimate a parameter for trend by looking at a ten-year period, but they opted as well to use a shorter period within that same period, so I guess from my view when I'm trying to estimate a parameter, I've got a ten year period, I'm

Page 188
taking, you know, I'll go back to my averaging for the height, so I take the average of these people here and come up with an average, but then I take your average alone. To me, that sounds like re-sampling. I don't know why I would rely on the smaller sample to come up with my parameter when I've got an estimate from the bigger one. I don't think that then averaging these two gives me a better estimate of how tall people are in the room on average. STAMP, Q.C.:
Q. So when you come back to the four test periods now, which is two pages or so beyond where we are.
CHAIRMAN:
Q. Mr. Stamp, it's 1:40, we were supposed to break at 1:30. Is there a natural -
MS. GLYNN:
Q. We did have some discussion of maybe pushing on, but I don't know where Mr. Stamp is in regards to cluing up.
STAMP, Q.C.:
Q. I would certainly like to push on, Mr. Chairman and Commissioners, if I may. I won't be finished by $2: 00$.

should probably adjourn and you can finish tomorrow. I mean, it is $1: 40$. Do you violently object if we adjourn now.
STAMP, Q.C.:
Q. Oh no, no, Mr. Chairman.

MS. GLYNN:
Q. Did you have a point to finish before -

CHAIRMAN:
Q. I mean, I'm sorry, yes, are you--is there a trend you have to finish. Excuse the terrible pun.
STAMP, Q.C.:
Q. Quite a bit of trend I have to finish. But perhaps we can just wrap up this point, if I can, if that's okay.
CHAIRMAN:
Q. Sure, yes.

STAMP, Q.C.:
Q. So, Mr. Doherty, at the top of page 6 which you have there now, we have four periods that are being, I guess, analyzed by Oliver Wyman.
MR. DOHERTY:
A. Yes.

STAMP, Q.C.:
Q. And the first ten-year period happens to end

Page 191
December--I guess December 31st, 2012.
MR. DOHERTY:
A. Correct.

STAMP, Q.C.:
Q. But leaving out some data points. Is the next period a subset of that?
MR. DOHERTY:
A. Yes. It's a five-year period, so -

STAMP, Q.C.:
Q. The most recent five years of that?

MR. DOHERTY:
A. Yes, but those five years are within the first ten-year period.
STAMP, Q.C.:
Q. But now only leaving out one data point.

MR. DOHERTY:
A. Two data points, a high and a low.

STAMP, Q.C.:
Q. Yeah, but not four, it's half of the data points left out before, and again, is this, you know, a guess a formula for doing it as opposed to an analysis?
MR. DOHERTY:
A. My understanding is that it's a formula.

STAMP, Q.C.:
Page 192
Q. Okay, and then we come to the second two groups, it's a ten-year and a five-year again, but they are slightly different, are they?
MR. DOHERTY:
A. Yeah, they end six months before the two periods above.
STAMP, Q.C.:
Q. Okay, so each of those analysis reveals a percentage?
MR. DOHERTY:
A. Yes, so they each reveal an estimate of the underlying trend parameter.
STAMP, Q.C.:
Q. How, for example, does the minus 1.7 percent relate to anything that you've done in terms of the period?

MR. DOHERTY:

A. So we did frequency and severity, our eightyear period for bodily injury is for an annualized trend of 4.4 percent.
STAMP, Q.C.:
Q. Okay.

MR. DOHERTY:
A. I believe what they're trying to do here is estimate a parameter for loss costs that would

1	CERTIFICATE
2	I, Judy Moss, hereby certify that the foregoing is a true
3	and correct transcript in the matter of a Facility
4	Association Application re: Taxi and Limousine Automobile
5	Insurance Rates heard on the 5th day of November, 2014
6	before the Board of Commissioners of Public Utilities,
7	120 Torbay Road, St. John's, Newfoundland and Labrador
8	and was transcribed by me to the best of my ability by
9	means of a sound apparatus.
10	Dated at St. John's, Newfoundland and Labrador
11	this 5th day of November, A.D., 2014
12	Judy Moss

-\$-	$\begin{aligned} & \mathbf{\$ 5 0 . 0 0}[1] \\ & \mathbf{\$ 5 0 0 , 0 0 0 . 0 0} \\ & \hline[1] \end{aligned}$	54:7,9 56:13 85:18 96:10 96:11 111:8 116:10,12	$\mathbf{1 9 9 3 . 2 5}_{[1]} 111: 15$	$\begin{array}{\|c\|} \hline 167: 3 \text { 181:11 } \\ \mathbf{2 0 1 2}[81] 25: \end{array}$
-\$-				2012 [81] 25:8 26:13,17
$0_{[1]} 10: 20$	800.00	10-year [1] 41:20	1:00 [1] 150:12	$31: 3,1732: 14,16,17$
\$1,200.00 [1] 17:13	\$57,804.00 [1] 98:5	100 [87 9:21,22 37:19,23	1:14[1] 158:4	33:24 38:17 39:5 55:
\$1,206.00 ${ }_{\text {[2] }} 17: 17,18$	\$657,350.00 [2] 69:12	$\begin{gathered} 100[8] 9: 21,22 \\ 57: 19,20,23,24 \end{gathered}$	1:30 [3] 5:5 179:7 188:17	56:9,10 57:11,12 58:9
\$1,270,697.00 [1] $72: 21$		10:00 [1] 17:4	1:40 [2] 188:16 190:2	58:17 59:18,20,25 63:6
\$1,677,734.00 ${ }_{\text {[2] }} 30: 8$	\$78.00 [1] 13:14	10:15 [1] 31:22	1:46[1] 196:22	$\begin{aligned} & \text { 65:10,13,25 66:7,11 } \\ & \text { 67:14 68:24 69:8,24 } \end{aligned}$
		10:30 [1] 47:12	[3] 29:19 44:6,	70:13,21 73:1,2,6,6, 11
$\begin{aligned} & \mathbf{\$ 1 , 8 5 5 , 5 2 0 . 0 0}[1] \\ & \mathbf{\$ 1 , 8 5 6 , 3 2 : 1 3} \\ & \text { [1] } 73: 5 \end{aligned}$	-\&-	10:45 [1] 58	-2-	73:17,20,21 75:8,19 $79: 11$ 80:3 81:22 85:4
$\left\lvert\, \begin{aligned} & \mathbf{\$ 1 , 9 3 1 . 0 0} \\ & 38: 10 \end{aligned}\right.$	\& [1] 2:12	58:8,18,22 59:18 96:10 96:11	$\mathbf{2}^{[25]} \text { 22:20 24:10,17,17 }$ $24: 21 \text { 29:14 30:25 37:18 }$	85:14,21,22 86:6 89:10 89:12,14 90.2 5, 8.24
\$1.00 [1] 72:2	-'-	2	17 45:4 51:23 61:11	$\begin{aligned} & 9: 5,6,10,119: 9 \\ & 132: 12 \text { 149:19, } \end{aligned}$
$\mathbf{\$ 1 0 0 , 0 0 0 . 0 0}[3] 48: 22$, 17 [1] 135:14	$117{ }^{\text {[1] }} 90: 21$	$\begin{aligned} & 77: 6,23 \\ & 78: 7,14 \\ & 88: 18 \\ & 92: 21,24: 294: 2 \end{aligned}$	164:13 172:8,16,20 173:5
\$100.00 [1] 72:1	${ }^{\prime} \mathbf{9 3}_{\text {[3] }}$ 132:10,12 135:14	$118{ }_{\text {[1] }} 145: 7$	111:6,12 156:10	\|2012-2
\$1000.00 [1] 10:22	'99 [2] 146:17, ${ }^{\text {c }}$	11:00 [3] 3:17 5:6 72:17	$2.1{ }^{\text {[2] } 24: 10,21 ~}$	2012-H1 [2] 91:22
\$11,448.00 [1] 91:23		11:13 [1] 82:17	2.8 [2] 56:8 81:23	149:21
$\begin{aligned} & \mathbf{\$ 1 2 , 3 6 1 . 0 0} \text { [1] 91:2 } \\ & \mathbf{\$ 1 2 0 6 . 0 0} \end{aligned}$	-1.7 [1] 180:14	$\mathbf{1 1 : 3 0} 0_{[4]} 3: 18,1982: 16$	2.a.2.1 [1] 24:23	2012-H2 [5] 91:22 99:11 167:2,3 179:5
\$125.00 [1] 13:20	-it's [1] 124:10		$20{ }_{\text {[15] }} 48: 1198921$	2012/1 ${ }_{[2]} 79: 4,15$
\$2,056.00 ${ }_{[2]} 31: 5,17$	-the [1] 136:4	12 [25] 29:20 43:1 4	100:10,19 115:20 116:6	2012/2 [2] 79:2,12
\$2,125,082.00 ${ }_{[1]} 35: 6$		47:23 48:2 51:5 74:5	172:14 177:13,14 178	$\mathbf{2 0 1 3}_{[17]}^{17: 19} 10: 16,20$
\$2,250.00 ${ }_{[2]} 10: 21,23$	-.-	:8,10,12,22 76:3,4,2	178:12,15	
\$2,474,620.00 [2] 58:9	. ${ }_{\text {[1] }} 25: 25$	7:3 78:6,19,25 94:3,7	20,000 [2] 141:20,22	
60:1	. $25{ }_{\text {[1] }} 111: 21$	$\begin{aligned} & 94: 10 \\ & 98: 10 \end{aligned}$	20-year [1] 135:4	2013/1 [1] 78:21
\$2,500.00 [8] 101:12,19	. $9835{ }_{[3]} 79: 3,5$,	$120{ }_{\text {[1] 1 1 }} 197: 7$	$200[1] 39: 21$	2014
102:3,5,9,14 182:23		12	2001 [1] 177:14	4:14,17 5:1 59:6 87
	-0-		$2003{ }_{[28]} 28: 1931: 7,8$	155:18 197:5,11
$\$ \mathbf{2 . 6} \text { [1] } 36: 2$	$\mathbf{0}_{[4] ~ 111: 7 ~ 112: 10,15}$	125 [2] 10:15,19	35:4,6,17,20 38:10 42:10	2015
\$2.8 [1] 36:21		12:00 [1] 97:18	55:8,16 56:2,3,5,20,22	
\$22,552,118.00	0's [1] 112:6	12:15 [1] 109:12	57:5,9 103:14 130:22	87:21,25 88:3,4,6,9,
81:3	01 [1] 156:4	12:30 [1] 123:19	134:2 152:23	88:24 89:15,
\$22,552,791.00		12:45		2016 [4] 87:9,13 88:5,13
	-1-	12th [1] 5:	2004 [31] 53:18 54:	2017 [4] 87:7,10,13
\$3,000.00 ${ }_{[1]}^{17: 13}$	33	$13_{\text {[5] 47:23 49:8 51:5 }}$		132:
\$3,021.00 ${ }_{[1]}^{16: 6}$	85:11 88:6,18 92:15,24	97:2 98:10	$\begin{aligned} & 55: 1057: 21 \text { 101:9,1 } \\ & 103: 1,9,2018: 10 \end{aligned}$	$204{ }^{[1]}$ 87:13
\$3,148,441.00 ${ }_{[2]} 73: 10$	111:6,8, 12,17 112:12,13	14 [4] 47:23 50:10 51:6	130:2,22 131:4 133:2	205 [1] 87:14
79:16	112:13,16 120:10,11	97:2	133:22 139:1 164:15	20th [1] 88:19
\$3,221.00 ${ }_{[1]} 17: 18$	1185	$14.2{ }_{\text {[1] }} 90: 11$	172:16 181:20,24 182:1	$21_{[1]} 136: 15$
\$3,252.00 [1] 38:11		$15{ }_{[18]}^{51: 9,11} 54: 24$ 55:2		$22\left[{ }^{[3]}\right.$ 69:20,22 136:15
\$30.06 [1] 149:20	1,000 [5] 97:23,23,24,25	82:25 83:6,20 84:5,15	2004-H1 [2] 131 134:19	22nd [1] 87:20
\$313.00 ${ }_{[1]} 92: 2$	103:2	104:15,20,21 128:5 131:11,17 149:16 168:11	\|2004-H2 [11] 102:19	23rd [7] 4:17 87:20,
\$313.19 [2] 91:9 149:22	[3] 79:1,5,14	$\begin{aligned} & \text { 131:11, } \\ & 184: 25 \end{aligned}$	2004-H2 [11] 112:16 131:1 172:7,16	89:15,20 90:1,3
\$316.76 [6] 89:13 90:4	$1.0598{ }_{[1]}^{55: 3}$	15	172:21,24,25 181:20,	$24{ }_{[4]} 71: 8,19$ 78:15 79:2
90:25 91:13 92:5 150:4	$1.1239{ }^{[1]} 66: 8$	151 [1] 57:10	182:5	$\mathbf{2 5}_{[4]} 9: 714: 3131: 3$ 52:7
\$320.00 ${ }_{[1]} 92: 3$	$1.131{ }_{\text {[1] } 67: 12}$	$155\left[11{ }^{\text {[1] }}\right.$ 571	$2005{ }_{\text {[8] }} 55: 4,6,657: 2$	$2600{ }_{[1]}^{22: 17}$
\$320.06 [1] 91:12	1.1316 [2] 67:10.15		172:20,25 173:5 175:	26th [1] 4:11
\$343.36 [1] 98:15		$16[8] 43: 147: 1856: 1,3$ $56: 24$ 155:18 194:24,25	2005-H1 [4] 102:20	$294.3{ }_{[2]} 10: 811$
\$360.78 [1] $88: 23$	$1.2383{ }_{\text {[1] }} 55: 4$	$1600{ }_{[1]} 150: 1$	182:6,8	2:00 ${ }_{\text {[3] }} 188: 25$ 189:4,11
\$361.71 [3] 89:3,11 90:2	$\mathbf{1 . 4 6}[1] 75: 15$	$161{ }_{[1]} 150$:	H2 [1] 181:11	2:45 [1] 5:6
\$376.78 ${ }_{\text {[1] } 89: 1}$		17 [4] 55:23,25 56:23	$2008{ }^{\text {[2] 1 1 1 }}$ 24:13,18	
\$4,431,613.00 ${ }_{[1]} 70: 17$		88:12	2009 [77] 36:19 65:20,2	3-
\$4,992,833.00 [1] $79: 20$		17.81 [1] 75:23		:21 26:14 30:24
\$4,992,958.00 [2] 69:10		18 [8] 55:23 74:5 75:22	2010	713 85:12 92:22 93:8
80:4	1.5427 [2] 77:15 78:20	76:4 77:3 78:9,25 79:2	$\begin{gathered} \mathbf{2 0 1 0} \\ 82 \cdot 1 \\ {[5]} \\ \hline 149: \end{gathered}$	3.3 [1] 81:23
\$5,088,963.00 ${ }_{[1]} 69: 25$	1.7 [4] 192:14 195:1,18 195:19	$19{ }_{[1]}^{127: 17}$		3.8 [1] 56:11
\$5,534,000.00 [1] $29: 24$		199.5 [2] 40:18,22	49:2	30 [2] 62:2 78:1
\$5,653,308.00 [1] 69:14	48:11,19,21,23,25 50:8	$\begin{aligned} & \mathbf{1 9 9 3}_{[4]} 44: 16103: 14 \\ & 111: 16 \text { 130:22 } \end{aligned}$	2011-H2 [3] 138:18	30,000 [1] 141:18

$\begin{aligned} & \hline \mathbf{6 5 2}_{[1]} 31: 13 \\ & \mathbf{6 6 / 6 7}_{[1]} 81: 25 \\ & \mathbf{6 8}_{[2]} 94: 11,14 \\ & \mathbf{6 t h}_{[1]} 4: 5 \end{aligned}$
-7-
$\begin{array}{r} 7 \text { [7] } 37: 438: 1240: 18 \\ 94: 24,2596: 9172: 23 \end{array}$
71 [2] 94:6,7
72 [1] 140:13
73 [1] 140:13
74 [2] 94:11,15
78 [2] 68:14 79:25
79 [2] 68:15 80:1
7th [1] 4:11
-8-
$\begin{gathered} \mathbf{8}_{\text {[8] }} 38: 3,5,8,1341: 6 \\ 94: 2495: 13172: 23 \end{gathered}$
816 [3] 29:11,12 86:6

-9.
$\begin{aligned} & 9 \text { [7] } 41: 3 \text { 43:16,19 94:24 } \\ & 95: 1596: 2,9 \end{aligned}$
$93{ }_{\text {[1] } 60: 9}$
94.2 [1] 88:12
97 [1] 78:15
9:00 [2] 3:17 5:5
9:41 [1] 1:2
9th [1] 4:14
-@-

@ [1] 87:15

A.D ${ }_{[1]}^{197: 11}$
a.m [8] 1:2 17:4 31:22 47:12 58:5 72:17 82:17 82:18
ability [2] 97:5 197:8 able [20] 5:14 12:21 48:3 49:19 50:4 65:20 79:6 93:16 95:3 114:2 115:5 143:14 151:10,16,24 152:13,16 180:11,16 181:1
above [15] $37: 23$ 73:3
76:12 77:17 89:18,19
102:5 118:12,20 128:21
132:25 138:14,16 141:15 192:6
absolute [2] 114:15 166:24
Absolutely [5] 22:4,11 74:8 123:4 131:24
accept [4] 170:24 173:1
194:15 195:3
accepted ${ }_{[2]} 136: 8$ 180:7 access [2] 26:23 49:2
accident [163] 9:22 10:8
11:8 14:4 25:21 27:15

27:16,25 28:2,5,6 29:11
29:23 32:15,20 35:11,17
36:19 39:5 42:9,13,15
42:17 43:21 44:9,10 47:3 47:7,21 49:12 52:9,11
52:20 53:20 54:19 55:3
55:4,15,15 56:2,2,17
57:1,3,9 62:7 63:4,6,15
63:20,22 64:3,9,12,16
64:18 65:24 66:7 67:9
68:22,24,25 69:2,4,6,8
69:24 70:21 71:4,10,17
71:19,20 72:15,19 73:1
73:14 74:1,11 75:11,13
75:16,17,20,21,21 76:2
76:25 77:11 78:1,5,9,21
78:21 79:2,3,11,15 81:2
81:20 83:10,14 85:3,4
85:21 86:7,9 87:6,16,19
87:24 88:4,5,6,8,10,11
88:15,16,16,24 89:6,7,8
89:10,20,25 90:5,8,9,23
91:4,6,10,13,16 94:3,4
98:22 100:10 103:13 104:22 110:22 111:16,20 116:11,12 117:8 129:12 134:1 149:21,24 150:3
152:15,17,18,23 156:21 164:12 175:22 176:6 186:4 187:4
accidents [10] 33:6,12 40:20 73:1,11 75:7,18 88:2 89:3,14
accommodate [1] 3:21 account [8] 40:23 77:19 80:8 161:16 171:17,19 176:6 184:7
accounted ${ }_{[1]} 34: 22$ accounting [3] 20:18 129:19 137:21
achieve [2] 41:8 86:1 acquire [1] 12:19 acronyms [1] 119:9 Act ${ }_{[1]}^{1: 7}$
action [2] 42:10 129:13
activity [20] 36:14 42:11
50:16 61:25 65:9 66:6
66:10 73:6,7,11,20 74:10 77:1 79:1,12,15 80:24 82:5 83:9 92:25
actual [29] 25:2 32:21
54:10 72:7 73:24 87:5
97:20 108:9 109:5 113:11
113:13,18,22 118:14,19
118:20 127:18 131:25 136:23 143:4,4,10,13 145:13,15 155:14 157:5 158:11 160:22
actuarial ${ }_{[16]}$ 2:18 5:24 20:9,16,17 21:2,4,9,13 21:16,24 22:8,22 122:11 122:12 168:4
actuaries [7] 2:17 7:11
21:2 111:23 122:14,15 184:5
Actuaries' ${ }^{[2]}$ 22:15 150:15
actuary [5] 2:1 3:2 20:22 22:1 64:23
actuary's [2] 24:12
150:18
add [3] 69:13 79:19 112:3
added [3] 94:10 124:12 124:13
adding [2] 64:13 124:18 addition ${ }_{[7]}$ 25:24 34:1
43:4 53:21 62:12 114:21 166:3
additional [10] 10:7 43:9
45:19 46:22 50:19 62:19
99:14 113:1 124:19 144:1
address [3] 19:21 122:25
125:13
addressed [1] 153:17
adds [1] 178:18
adequate [2] 11:17 36:13
adjourn [2] 190:1,3
adjourned [1] 196:14
adjudicating [4] 40:11
40:13,15 58:3
adjudication [3] 36:5
95:22 153:18
adjust [5] 39:11 42:6
183:14 184:7,11
adjusted [5] 29:8 35:24 124:19 125:5,6
adjuster [1] 16:16
adjusting [2] 44:8 159:3
adjustment [10] 33:23
37:12 50:20 51:3 55:1,9
95:18,24 184:17,21
adjustments [1] 50:11
adjusts [1] 124:20
administrative [1] 58:4
adopt [1] 127:22
adoption [1] 22:23
adverse [1] 48:9
advisory [2] 1:25 122:13
Advocate [8] 2:23 4:16
4:23 7:3 154:18,24 155:15,23
affect [6] 46:25 47:2,3,4 114:25 183:19
affects [1] 49:15
affirmed [2] 18:25 19:10
again [81] 6:7 10:6,13
11:11,14,25 27:25 29:16
29:23 31:3 40:8 41:19 46:4 50:1 51:5 52:2
56:16 57:15 64:1 67:4
68:17 69:20 70:20 71:3
71:14 72:7 79:9 80:6
82:2 83:3,13 85:13 87:7
89:23 92:5,13 94:20
95:13 96:9,14 99:19
100:6 103:24 106:18 115:9 119:11 130:9 131:3 133:20 134:7 137:25 138:16 141:6,12 142:5 143:11 144:16 145:20 146:3,21,22 148:2 149:19 149:22 151:14 158:7,23 163:15 169:7 175:22 177:11 178:13 180:4

183:11,12,13 191:20 192:2 193:3 194:19 195:12
against [4] 92:3 99:2 126:15 168:15
age [4] 78:2,6,10,22
agencies [1] 63:24
agency [1] 26:6
agent [1] 26:5
ages [4] 72:16 75:22 76:3 76:4
ago [2] 13:13 185:24
agree [5] 156:17 157:4
157:16,20 171:9
agreed ${ }_{[2]}$ 5:9 8:7
ahead [1] 30:22
AIX [6] 29:4 32:2,12
66:14 92:16 93:3
align [1] 132:8
aligned [2] 46:8 153:21
aligning [1] 137:11
aligns [1] 142:14
all-coverages [1] 27:18
all-years [1] 140:12
allocate [1] 70:3
allocated [1] 159:2
allocation [1] 70:7
allow [2] 112:2 114:20
allowed [1] 138:22
allowing [1] 112:1
allows [7] 37:21 88:21
89:5 93:17 106:4 111:21 129:12
alluded [1] 5:4
almost [8] 39:16 75:19
87:13 97:14 103:14 140:13,20 141:11
alone ${ }_{[2]}$ 58:2 188:4
along[2] 27:14 82:25
alternative [1] 195:3
altitude [1] 106:14
altogether [3] 48:15
112:4 153:20
always [5] 115:13 120:5
143:24 147:16 179:22
among [2] 27:16 71:22
amount [18] 14:11 30:3
35:6,23 36:20 38:7 59:22
65:7 73:4,5 79:13 81:24
89:24 96:13 98:4,12 99:20 146:7
amounts [8] 32:24 33:10
33:11 34:18 36:4 94:25
95:9,16
analyses [1] 143:25
analysis [63] 26:19,21
45:18 50:22 51:6 76:23 86:25 87:17,18,18 89:19 91:19 92:11 95:19,23
96:19,22 97:4,6 100:7 100:18 103:15 106:7,24 111:1 114:1 115:11 116:16 118:5 120:18 121:10 122:16 123:2

125:13 133:2 138:4,7,19
141:7,23 153:14 154:4,9
158:16,18 164:13 166:5
168:11,21 169:11,13
172:3 173:17 179:14,19
179:20,25 180:2 181:15
184:14 191:22 192:8
194:10
analyst [15] 1:24 93:16 96:16 99:12 103:16
111:25 112:5 113:9,15
114:20 121:11 133:5
138:4,16 142:8
analysts [1] 96:24
analyze [3] 119:2 133:17 138:3
analyzed [2] 157:14 190:21
Andrew [1] 3:11
Andy [1] 1:9
announced [1] 178:24
annual [5] 53:14 87:10
108:5 140:11 159:5
annualized [1] 192:20
annually [2] 130:25 147:13
answer [2] 19:3 194:21
answers [1] 98:13
anticipated ${ }_{[1]} 51: 4$
anybody's [1] 19:17
anyway [5] 66:25 70:21
140:20 151:22 156:23
apologize [4] 31:24
72:10 79:25 132:6
apparatus [1] 197:9
appear [3] 142:21 171:16 193:4
appearing [1] 2:25
appendium [1] 68:20
Appendix [10] 62:9
67:17 68:11,13 79:24 90:18,20,20 104:12 174:13
applaud [1] 79:18
Applicant ${ }_{[2]} 2: 5$ 4:22
application [16] 1:6 4:6
4:9,12 5:12,15,17 6:2,8
7:4,5 9:12 10:1 16:3 59:6 197:4
application's [1] 7:20
applications [1] 3:6
applied [6] 67:2 79:1,3 96:1 153:8 157:5
applies [5] 105:7 157:3 164:10,17,24
apply [21] 44:20 47:6,6 47:8,9,10 65:14,17 66:1 66:8 67:5,7 78:17,20 96:7,12 106:24 152:13 153:5,6 154:6
applying [1] 129:11 appointed [2] 4:17 64:22 appreciate [1] 166:10 appreciated [1] 18:16
approach [16] 63:13,14
144:14 154:14 156:8
158:6 164:3,6,8,25 165:6
178:23 179:3 183:12
184:5 187:20
appropriate [6] 12:19
26:25 65:1 121:15 127:22 166:21
appropriately [1] 137:21
approval [1] 44:15 approved [3] 9:17,20 14:15 approximate [1] 58:15 April ${ }_{[1]} 4: 17$ arbitrary [1] 127:20 areas [3] 14:13,17 28:17 arise [3] 34:4 42:11 90:7 arising [8] 51:12 52:11
52:14,21 53:4,5 83:15 83:19
arrested $_{[2]}$ 9:2 12:3
arrive [1] 97:16
asserted ${ }_{[1]} 185: 19$
assessment [5] 33:2 36:9
36:10,12,13
assist ${ }_{[1]} 152: 5$
assisting [2] 3:4,13
associated [10] 37:22
40:10,12,14,15 41:13,18 62:11 66:11 112:21
Association [20] 1:6
2:11 4:7 7:4 9:13,14,15
20:4 21:11,18 22:13
25:13,18 26:11 30:14
34:16 44:14 84:25 151:3 197:4
association's ${ }_{[2]}$ 122:11 154:1
Associations [1] 25:10
assume [6] 53:25 85:24 86:3 103:21 161:23 185:18
assuming [5] 35:18 46:14 59:12 94:5 116:6 assumption [2] 46:20 75:24
assumptions [1] 7:16
Atlantic [1] 76:15
attempt [1] 41:7
attention [3] 69:8 140:12 167:25
attitude [1] 11:3
audited [1] 26:24
augment ${ }_{[1]} 25: 8$
August [5] 9:19 44:6,12
101:13 181:24
automatically [1] 167:16
automobile [13] 1:7 9:23
10:10 11:15 26:10,14
28:7 53:17 71:9,12 86:9
86:10 197:4
available [17] 3:10,11

14:12,18 25:5,7 43:20
43:22 66:14 97:11 111:25 144:7 157:17 163:14 180:23 185:1 196:5
average [63] 13:9,11
31:1,4,8 38:6,7,10,11
42:13,15 46:16 53:9
86:12 87:16,19,24 88:4
88:6,15,17,21,23 89:4,7 89:18,19 90:8,9 91:2,9
91:14 98:3,6 111:16,20
150:5 159:20 160:13,17
160:22,23 161:1,5,7,10
161:14,15,21 162:2,4,5
162:11,12,17,18,21
163:11 168:15 188:2,3,4
188:10
Averaged [1] 30:24
averages [4] 44:1 76:11
160:19 163:10
averaging [2] 188:1,9
avoid [1] 137:17
award [3] 101:17,23,25
awards [2] 102:5,8 aware [3] 5:14 10:2 150:25
axis [1] 107:3
-B-

В [8] 65:8,12 66:6 80:1 90:18,20,20 174:13
B'y [1] 9:1
Bachelor [1] 20:24
bad [2] 48:12 96:15
balancing [1] 128:20
bands [1] 99:23
bar [2] 57:21 99:25
barely [2] 77:7 141:6
bars [3] 98:23 100:2
118:17
based ${ }_{[31]} 7: 16$ 14:1
25:22 33:1 64:8 75:24
76:23 78:4 89:18 91:15
108:14 109:2,3 113:15
122:18 129:4,9 149:22
159:5 164:19 165:9
170:10,10 175:2 176:3 178:10 180:7,8,16 184:25 185:13
bases [1] 41:16
basic [1] 26:15
basis [16] 25:15,18 31:4 42:22 46:18 61:24 62:21 64:3,10,11,16,18 85:20 92:7 96:2 169:7
Bear [1] 8:23
bearing [1] 124:16
became [1] 10:2
become [2] 101:6 119:1
becomes [1] 112:16
beforehand ${ }_{[1]}$ 179:16
began [1] 83:23
begin [2] 166:20 182:2
beginning [2] 103:1

106:2
behalf [3] 22:13 26:5 151:3
behaviour [1] 117:11
behind ${ }_{[6]}$ 2:10 33:22
52:8 84:20 93:16 163:2
below [31] 24:19 27:19
28:6,13 30:17 36:17
37:19 44:2,3 57:24 65:8
72:6 78:14 82:4 87:14
89:2 100:5 101:19 102:1
105:10 113:5 118:24
119:8,25 125:12 128:21
132:4,16 141:13,16
169:17
benchmark [2] 117:23 155:19
benchmarking ${ }_{[1]}$

151:5

Beneath [1] 27:24
benefit [3] 28:3 71:17 168:3
benefits [22] 9:22 10:9
11:8 27:25 28:2,6,6 47:4
47:7 63:22 71:5,10,20
71:20 86:7,9 104:22
117:8 175:22 176:6 186:4 187:4
best ${ }_{[7]} 32: 18$ 128:13
161:18,20 165:1 194:11 197:8
better [8] 23:23 124:11
124:14 129:18 133:16
134:18 188:9 195:6
between [59] 42:2 43:20
51:16,21 53:10 60:23
62:21,24 63:1 70:9,22
71:16 75:12,22 76:3,4
76:24 77:2 81:5,21 83:4
84:1 85:4 91:16 94:1,7
96:9 100:1 103:14 105:25
106:3,19 108:9,18,22
109:4 111:10 113:17
119:20,22 129:1 130:22
131:1 132:5,13 137:3,19
143:8,10,12 147:3,20
158:11 162:4,24 163:11
175:1 176:2 183:19
beyond [3] 41:6 85:21
188:13
$\mathbf{B I}_{[1]}^{110: 10}$
bias [4] 104:4 114:11
144:1 146:23
biasing [1] 142:13
Bible [1] 19:6
bifurcate [3] 51:24
103:20 148:15
bifurcated [2] 115:20 147:20
bifurcating [2] 118:9 184:9
bifurcation [2] 131:6
183:18
big [7] 74:20 142:1,2
167:10,11,12,14
bigger [3] 162:3 163:3
biggest [5] 16:13 149:6 163:13 167:18 168:2
Bill ${ }_{[1]} 3: 1$
bit [47] 15:24 71:7 72:11
76:7 77:8,8,9 78:13
86:11,13,19,25 88:7
89:22 91:4,8,20 92:9,12
94:16 98:17 100:23 111:4 113:6 115:14,16,17 118:4 118:25 127:19 132:23 135:23,24 137:23 146:3
150:2,15 153:9 158:24
160:5,9 165:3 168:1
173:16 175:21 182:13 190:13
black [3] 99:6,22 100:2
blank [1] 80:12
block [1] 28:12
blue [7] 98:23 99:21
118:14 132:5 138:13 142:24 143:7
Blundon [1] 1:20
board [13] 1:19,21 2:1
4:6,15 5:14 6:11 15:19
16:2 22:2 116:15 122:13 197:6
Board's [3] 3:12 7:11
7:17
bodily [50] 27:23 52:17
53:11 54:23 55:12 66:7 66:15,20 69:9 70:12,16
70:20 71:4 72:14 80:3 87:9,11 88:1,22,25 89:4 90:22 98:20 100:21
104:15 105:2,5 112:7
117:7 128:6 129:7 130:1 145:2 147:12 164:14 167:21 170:14 171:1,7 171:11 172:3 173:17 175:14 177:3,7 184:19 186:3 187:4 192:19 194:5
body [1] 116:20
boring [1] 111:23
borne [1] 102:1
Bornhuetter [2] 62:22 64:21
Bornhuetter-Ferguson [2] 62:5 64:5
bothered ${ }_{[1]}$ 102:16
bottom [14] 57:11 67:13
72:18 75:6 80:11,25 88:9
91:19 94:2 107:5 157:6
157:9 180:25 181:1
bought ${ }_{[1]}$ 17:16
box [1] 110:19
boxes [1] 142:25
brackets [1] 27:22
branch [1] 12:24
break [4] 3:19 5:5 82:11 188:17
brief [2] 6:23 7:18
briefly [6] 19:19 23:3,7
48:1 61:1 132:3
bring [11] 21:13,15 23:15
35:5 36:15 144:10 145:3
152:23 154:16 167:25
186:7
bringing $_{[3]} 103: 13$ 167:13 174:19
broken [1] 27:19
Brook [1] 15:17
brother-in-law [1] 74:22
brought [3] 101:16 102:6 113:12
build [5] 97:8 115:2,7 143:14 168:9
building [8] 114:2 115:8 121:14 161:7,11,24 162:8 162:18
built [3] 107:24 115:3 168:4
bullet [2] 174:23 175:24
bumpy [1] 134:21
bunch [8] 107:19 108:1
118:6 121:6 138:14 141:25 159:11 163:10
burden [1] 15:6
Bureau [2] 26:4,8
buried [1] 45:21
business [20] 1:9 4:8 9:7 13:23 14:10,16 15:7 16:9 16:11 17:11,24 25:13,19 30:11,13 32:3 40:7 43:6 67:3 81:13
buying [4] 45:10,22 46:1 46:4
Byrne [1] 1:24
-C-
$\mathbf{C}_{\text {[6] 61:10 65:15 66:3,7 }}$ 66:17 67:8
C-1 [1] 86:13
CA [6] 155:16 156:1,4 177:1 185:25 186:13
calculate ${ }_{[1]} 7: 16$ calculation [4] 125:16 133:14,15 194:19 calendar [2] 29:7,9
Canada [3] 13:23 26:4,9
Canadian [4] 2:16 21:1 22:15 150:15
cancel [1] 11:19
cancelled [1] 11:21
cancels [1] 12:25
cannot ${ }_{[1]} 11: 9$
cap [2] 48:4,14
capability [1] 115:8
capital [1] 6:6
capture [8] 41:12,15
52:7 97:24 135:21 147:6 169:14,16
captured [3] 50:17 93:3 135:25
captures [1] 50:12
capturing [2] 48:25 148:17
car [8] 12:16 16:6,6 17:17 17:18 92:16,18,19
carriage ${ }_{[1]} 95: 22$
carried [1] 31:13
carrier [2] 34:12,13
carriers [7] 26:2,8 32:11
32:18 36:4 40:11 154:2
carry [2] 11:17 82:22
cars [6] 16:5,7,8,8,13 17:17
cart [1] 158:16
case [50] 16:6 29:23 32:10
32:13,24 34:6 36:3,12
36:14,23 37:10 39:6 48:16 49:1 72:14,23
74:12 76:19 81:11 95:13 96:10,13 98:5,14,19
99:12,21 100:20 102:9
106:21 107:12 108:4
112:7 114:24 117:20
118:4,8 119:21 123:25
124:12,22 129:4,24
133:18 137:24 138:3 148:12 149:8 153:22 159:25
cases [3] 37:1 102:6 116:1
casualty [3] 2:18 21:2 22:18
catastrophic [2] 49:9 49:13
catch [3] 15:3 139:7 154:22
catchall ${ }_{[1]} 50: 10$
categories [2] 10:12 64:1
caused ${ }_{[6]}$ 53:18 117:16 126:21 140:17 183:21 184:3
causes [1] 53:19
causing [1] 137:4
Cedar [1] 19:24
cents [1] 13:20
certain [6] 97:9 157:10
157:20 179:4,6 193:13
certainly [16] 10:24 20:24 35:16 81:20 100:8 102:15,24 143:23 147:18 149:4 153:16 157:15 165:25 173:12 180:17 188:23
CERTIFICATE ${ }_{[1]}$ 197:1
certify [1] 197:2
Chair [1] 5:3
Chairman [48] $1: 3,10$
1:16 2:7,22 3:7 5:16,20 5:22 6:13,19,23,25 8:2,8 8:13,17,25 15:10,21 16:23 17:2,12,19 18:8 18:12,20 19:13 21:23 22:3 23:24 60:20 82:10 82:15,20,21 188:15,24 189:1,5,20,24 190:5,8 190:16 196:9,13,18
Chairperson [1] 4:3 challenge ${ }_{[6]}$ 100:23 101:10 142:3 146:4 149:6 153:9
challenged [4] 142:8 146:14 148:12 158:14 challenging [1] 136:6 chance [7] 118:3 125:15 126:6,9,19 127:9,11 change [32] 7:15 51:19 87:9 92:3,3 93:23 112:23 112:25 129:21,22 131:7 147:22 148:18 149:1 165:15,15 166:25 167:2 167:4,11,12,12,14 169:9 169:16 183:8 184:3,23 185:9,12,12 195:16
changed ${ }_{[20]}$ 44:15 51:20
54:4,15 113:3 117:13,17
147:19 148:2 149:7
157:18 163:16,17,18
169:9,14 178:11 185:7,9 185:11
changes [16] 3:20 27:1 42:8 43:5,23 44:11 50:13 59:17 76:18 117:3,9
120:15 125:25 146:12,25 167:5
changing [2] 51:2 169:12
channel ${ }_{[1]} 12: 2$
characteristic [1] 46:8 characteristics [3] 43:11 44:23 46:25 charge [5] 21:13 26:6 41:12 45:5 57:7
charged [2] 31:5 43:3 charging [3] 43:4 57:4 57:14
charing [1] 57:13
chart [16] 99:18 100:4
105:10 109:24 110:20
113:7 118:18,19 121:3
128:4 130:9,10,15 132:9 141:2 145:25
charts [6] 98:18 115:17
118:13,24 119:1 145:15
cheaper [1] 16:18
checks [1] 121:25
Cheryl ${ }_{[1]} 1: 20$
Chief ${ }_{[1]} 20: 10$
choice [2] 19:4 150:18
choose [8] 112:1 120:9
120:10,10,11 137:2,7 151:11
chose [2] 172:7 173:9 chosen [1] 126:4
chunk [2] 142:1,2
circumstances [2]
140:14 143:4
City [4] 9:11 11:20,21,24
claim [45] 10:18 14:4
16:15,17,18 34:11,15 40:13,16 42:11 45:16,16 45:18,21 46:5 47:15 48:19 49:13 52:19 53:9 92:20 93:2,4,6,8,12,18 94:1,18 97:21 98:3,4,6 98:12,24 99:16,19,20,22 101:16,18,20 146:25

182:23,25
claimant [3] 11:1 102:2 117:11
claims [78] 10:25 16:20
25:3 32:9, 19,21 33:2,25
34:1,3,4,20 35:19 36:5,8
36:11 37:11 40:12 42:10
46:6 47:20 48:3,4,5 49:2 49:4,18 50:16 51:12
52:11,13,18,21,24 53:1
53:4,5,10 56:3,8 58:1,3
61:25 72:25 75:19 80:15 81:8,10,15 82:6 83:11
83:15,19 90:7 92:22,22
92:25 94:4,6,8,15,16,19 95:1 96:4 97:23,25 98:4 98:24 101:15,21,23,25
103:7 152:17,21 183:1,5
clarification [1] 35:1
clarify [2] 83:3 104:12
class [2] 1:8 4:8
classes [1] 67:2
classified [1] 14:5
Clearly [1] 157:15
close [3] 9:8 57:22 162:17
closed [4] 92:22 93:22 94:3 98:23
closely [1] 67:18
closing [1] 17:8
cluing [1] 188:21
Co-op [2] 4:20 9:6
coefficient [11] 119:9
120:1 126:3,16,20,22 127:12 140:16,20 195:1 195:4
coefficients [4] 119:15 120:4 126:8 152:9
cognizant [1] 137:6
colleague [1] 2:24
collect [3] 37:25 45:11
46:23
collected [4] 37:16,17
37:20 39:8
collecting [5] 45:7,19
46:3,18 57:25
collinearity [1] 147:3
collision [3] 71:25 72:3
86:14
column [130] 29:3,14,25
30:24,25 31:1,21,25 33:5 33:6,16,18 34:21,22 35:2 35:9, $9,17,17,18,23,25$ 36:17,18 37:4,18,18 38:3 38:5,7,8,12,13,13,17,23 39:13,14 40:18 41:6
43:12,16,19 44:19,20
47:23 49:6,8 50:10 51:9
51:11 54:23 55:1,23,25
55:25 56:7,7,22,25 57:16
58:8,18,22 59:18 61:5
66:17,17,21 67:8,22,23
68:4 69:14,19,22 71:8,8
71:19 73:4,6,9 75:5,5,10 75:11 80:19,23 82:25
83:5,6,8,20,24 84:3,4,15
85:2,18 88:12 89:24 91:7 91:21 92:13,15,22 93:12

94:25 95:12 96:2,10,11
98:2,10,10 99:21 110:20
110:23 111:2 112:20
113:10,14 114:19 128:5
131:11,16 145:11,11
149:16,18
columns [16] 41:3 43:1
43:25 47:15,18,22 55:18
85:11 92:21 94:23,23
97:2 108:13,14 119:14 136:22
combination [2] 27:23 105:11
combine [1] 100:6
combined [2] 85:20 105:11
combines [1] 77:23
coming [3] 7:4 159:24 166:13
commence [1] 5:15
commences [1] 2:20
comment ${ }_{[5]}$ 5:3 6:1
171:6 176:15,15
commercial ${ }_{[15]} 26: 16$
52:16 86:23 87:23 88:25 91:25 92:6,14 95:14 96:4 103:8 115:10,25 124:17 130:3
Commission [1] 9:20
Commissioner [4] 1:14
8:22 17:25 18:4
commissioners [8] 1:12
1:18 2:7 5:22 19:13
60:21 188:24 197:6
Committee [2] 122:12 122:12
common [1] 28:5
companies [1] 12:9
company [7] 9:7 11:3
11:20 13:1,7 153:19,20
comparable [1] 193:1
compare [8] 64:19,20
65:19 124:9 125:1 135:3 162:21 183:24
compared [2] 39:22
73:19
compares [1] 194:4
comparing [4] 65:22
123:22 135:2 159:6
comparison [2] 132:13 145:14
compensate [1] 95:21
Compensation [1] 66:22
compiled [1] 26:12
complete [2] 9:24 63:14
completed [4] 22:14
25:6 50:21 62:6
completely [3] 26:20 108:10 134:18
compliance [1] 22:14
component [7] 6:4 23:7
28:1 60:5 104:16 128:7 175:15
components [2] 27:20

51:11
composed [1] 60:6 comprehensive [4] 72:1 72:4 86:15,17
Computer [1] 3:12
concept [2] 96:12 109:3
conceptually [1] 184:14
concern [3] 100:9 137:18 147:3
concerns [4] 7:3 27:3 136:25 143:24
concluded [1] 7:14 concluding [1] 196:22
conclusion [1] 174:6
conducted [1] 181:15
confirm [3] 22:11 23:20 176:8
confirmation [1] 26:21
connection [2] 42:2 108:9
cons [1] 122:7
Consent [2] 155:5 156:1
conservative [1] 189:23
consider [5] 51:18 95:2 100:10 111:18 165:4
consideration [7] 6:11 45:25 156:9 171:10,13 174:25 176:1
considered [5] 93:5,12
157:11,21 169:18
consists [1] 122:15
constant [1] 163:8
consulting [1] 7:11
consumer [11] 2:22 4:16 4:23 7:3 11:5,7 13:13 154:18,24 155:15,23
consumers [2] 13:8,12
contain [1] 47:16
context [1] 54:9
continuation [1] 74:19 continue [4] 45:9 74:17 113:6 149:5
contribution [1] 71:24
control [1] 12:21
convenient [1] 196:10
Corner [1] 15:17
Corporate [1] 1:21
correct [30] 23:1 28:15
28:21 30:18,20 31:15,19 33:8 34:24 35:8 38:19 38:21 39:1,25 40:25 59:4 68:1,8 80:14,21 104:18 105:14 123:14 174:3 176:20 182:11,19 191:3 196:15 197:3
corrected [1] 132:14 correctly [1] 13:5 correlation [1] 137:19
Cosimo [1] 2:12
cost [72] 6:5 10:18,20 13:18 14:25 32:19 37:22 38:2 40:12 42:23 50:5 51:16,20 52:4,6,8 53:6,7

53:10 55:12 56:3 83:6 86:22 87:3,24 88:11,24 89:6,11,17 90:23 91:2
91:10 92:2 97:5,12,16 97:19 98:3,7,8 100:5 101:2 102:1,15,21 105:11 105:25 106:1,20 107:3,8 109:23 124:4,17 145:12
145:17,17,25 146:5,8,13 146:16,20,24 147:21 149:24 150:2,4 154:1,2 166:8
costs [17] 10:21,22,23 11:6 13:16 14:25 16:5 16:21 40:13 41:12 51:22 53:12,15 86:20 132:2 149:18 192:25
counsel [2] 1:19 5:8 count ${ }_{[6]} 93: 6,15,25$ 94:1 94:18 97:22
counted [1] 29:10
counts [12] 29:11 85:19 92:19,20 93:2,8,18,23 94:24 98:25 99:1,16
couple [5] 98:8,13 136:17 168:10 170:17
course [7] 2:18 3:13 18:16 19:15 43:9 125:8 148:19
cover [3] 13:15,16 15:2
coverage [21] 33:20 62:7 63:14 64:11,16 65:7 66:23,24 70:3,4,6 71:14 72:5 85:9,25 86:4,11
89:17 175:7,23 176:17
coverages [33] 27:17 28:8,12,13,18,18 30:17 31:12 35:3,5,13,15 43:6 47:1,5,11 58:11 59:25 63:23 68:3,5 71:13,23 85:20 86:17 89:16 104:23 105:7 117:3,5 174:10 176:16 186:4
covered [1] 11:25
covers [2] 111:17 159:14 create [2] 105:18 139:23 created [4] 60:20 121:7 123:1 181:17
creates [2] 129:18 183:18
creating [1] 66:3
credentials [1] 19:19
cross [1] 4:24
cumulative [2] $74: 9$ 82:3
curious [1] 169:3
current ${ }_{[7]}$ 21:14 32:10 74:12 87:18,20 88:1 89:19
curse [1] 3:10
curve [2] 112:20,23
cut [2] 127:6,19
cycles [2] 116:2,4

$d_{[2]}^{61: 10 ~ 177: 15}$

D-1 [15] 27:10 41:18 61:4 67:12,23 68:5 80:19,21 83:2 84:17 85:2 90:14 90:17 128:5 131:17
D-2 [8] 61:9,11 65:2
67:15 79:21,22,24,24
D-5 [6] 60:17,18 84:16 84:21 90:13 149:25
daily [1] 13:19
damage [21] 27:24 28:8 46:1 47:5,8,9 55:13 66:16,20,22 69:11 70:13 71:21 87:12 104:21 117:8 174:5,20,23 175:9,11
damages [1] 187:13
Darlene [2] 1:15,17
data [113] 23:4,7,13
24:12,14,17,25 25:6,9 25:11 26:15,18 27:5 29:4 29:14 32:1,2 47:16 54:3 56:13 65:9,25 66:13 74:5 86:21 91:18 93:3 97:21
100:12 101:2 104:2
107:19 108:1,13,15
109:23,23 110:19 113:13 114:19 115:6 117:12
119:14 120:16,16 132:25 133:14,24 137:24 138:5 138:13 139:2,11,16,25 140:2 142:1,2,4,10 144:6 144:14,19 145:9,24 148:8 148:10 149:14 152:12 157:10,14,17,20 159:1,1 159:11,14,19 160:10,18 166:19 167:9,14,15
169:18,21,24 170:1,6 172:15,24 177:13,14 178:9,12 179:6,11 180:17 182:8 183:15,15,16 184:7 184:11,21 191:5,15,17 191:19 194:13,14,24,25
datapoint [2] 110:23,24 dataset [2] 85:13 92:10 date [23] 4:15 5:2 32:13
33:10 42:13,15 74:10 87:19,25 88:6,15,17 89:4 89:8,8,20 90:9,9 92:22 95:1,4 111:16,20
Dated [1] 197:10
Dates [1] 87:16
Davis [1] 3:11
days [3] 88:14,20 168:10
DCPD [1] 66:21
deadline [1] $5: 1$
dealing [1] 148:8
death [1] 28:3
December [23] 21:12

25:8 26:12,17 32:14,16

32:17 33:24 65:10,13,19 66:10 72:24 73:8,17,20
73:21 85:14 86:21 177:13 177:25 191:1,1
decide ${ }_{[4]} 100: 16$ 152:25 160:14 161:16
decided [6] 3:16 140:21 140:23 142:9 160:25 161:8
decision [3] 16:4 121:2 158:1
declaration [2] 19:6,9
declared [2] 19:16 21:23
decline [2] 130:11 141:3
declining [1] 131:21
decrease [5] 46:3 78:10 85:24 103:4 167:18
decreased [1] 55:7
decreasing [2] 52:6 130:4
deductible ${ }_{[6]} 46: 4$ 101:12,14,24 102:1 182:22
deductibles [4] 45:25 46:2 47:5,6
deem [2] 121:14 138:24
deemed [2] 138:19 171:4
definition [1] 158:9
delayed ${ }_{[1]}$ 5:7
deliberations [1] 6:12
demonstrated ${ }_{[1]}$ 6:9
depending [1] 171:8
derive [4] 84:18 98:8
107:4 159:4
derived ${ }_{[1]} 62: 12$
des [1] 38:8
describe [2] 152:11 158:25
described [4] 40:3 47:22
113:23 128:12
describes [1] 67:15
describing [5] 110:21
125:17,18,20 134:23
description [2] 29:5
46:13
detail [11] 25:23 46:10
46:19 48:3 49:7 63:16
83:3 84:19 85:15 151:13
182:13
detailed [1] 49:2
details [1] 196:5
determination [5] 62:10
109:2 151:1 152:8 171:16
determine [22] 54:20
64:14 80:6 89:5,9 97:9 105:24 108:16,25 110:6
132:2 154:7 158:8,18,20
159:15 160:13 168:21
170:2 183:22 194:22,25
determined [6] 25:22
88:14 165:14 168:23
170:25 184:25
determines [1] 64:25
determining [6] 61:24 107:14 151:14 168:6,19 186:2
develop ${ }_{\text {[5] }} 36: 8$ 76:3
81:1 131:10,16
developed [1] 183:15
development [22] 33:21
33:22 35:10,19 39:12
56:18 60:18,19,22 61:20
66:4 67:10,18 72:13,16

76:21 77:13 80:18 81:10 81:14 83:5,8
diagonal [6] 65:18 73:13
73:16,22,23 78:18
differ [1] 99:11
difference [34] 43:19
62:20 63:1 70:9,11,19
70:22 71:3,6 72:2,4,6
81:4,5,21 94:1,7,9,10
96:9 99:10 100:1 109:6
109:9 113:17,24,25 129:16 143:8,10,12 158:11 174:25 176:1
differences [8] 71:16,22 107:17 109:4 124:3 132:5 144:5 156:7
different [56] 10:12 36:3
46:25 61:25 62:3 72:16 73:25 74:8 76:11 101:1 107:22 112:3,4 115:3 116:24 118:7 119:22,23 119:24 120:20 121:18 122:19 125:4 130:21 133:4,15 135:2 137:2,7 137:12,22 138:23 140:19 144:17 145:23 150:11 154:3 156:7 159:11 160:2 160:3,6,7,10,11 162:22 164:21,25 173:3 174:6 183:17 184:10 187:14 192:3 193:2,5
differentiate [1] 111:10 differently [2] 47:1 137:9
difficult [1] 91:8
dig [1] 103:16
dips [1] 105:17
direct ${ }_{[2]}$ 66:21 132:13
direction [1] 129:20
directions [1] 145:23
directives [1] 151:9
directly [7] 51:4 61:10
61:20 63:6 90:13,16 92:16
Director [2] 1:20,25
disability [1] 28:3
disagreement [1] 84:1
disappear [2] 93:9 183:6 disappears [2] 93:6 101:20
discarded [2] 123:16,18
discarding [1] 140:24
Discoveries [1] 3:9
discrimination [1] 14:7
discussed [1] 8:5
discussing [1] 181:13
discussion [15] 19:14
27:8 50:12 82:25 83:23 122:17 155:19 164:1 174:21,22 175:24 177:2 182:14 185:23 188:19
distinct [3] 101:8 102:23 195:23
distinction [1] 83:4 distribution [1] 46:12
divergence [1] 84:3 divide $_{[5]}$ 35:9 75:9 89:11 90:4 160:20
divided [3] 37:18 97:22 98:4
dividing ${ }_{[6]} 30: 25$ 38:12 56:23 89:23,25 98:11
division [1] 75:4
documentation [3] 6:10 104:13 120:23
documents [1] 5:9 doesn't [29] 47:1,3,9 67:5,6,7 94:18 102:16 103:14 108:18 111:8 115:5 116:22 127:8
129:21,21,21,23 148:25
153:3 154:6 160:22
171:16 173:8,12 184:23 195:2,2 196:1
Doherty [221] 2:11,13
2:19 5:24 18:20 19:3,4,8
19:10,15,18,19,22,23
20:1,2,8,14,20,23 22:6
$22: 10,2523: 9,2524: 5$
24:11,16,20,24 27:8,11
28:11,14,20 29:2 30:4
30:12,19,23 31:7,9,14
31:18,23 32:7 33:5,7,13
33:17 34:10,23 35:7,14
36:1 37:6 38:2,4,16,20
38:25 39:4,15,24 40:6
40:24 41:4,5 43:18 44:22 47:17 51:9,10 55:19,20
55:24 58:7,12,21 59:3,7
59:11,21 60:2,8,13,25
61:3,8,18 67:21,25 68:7
68:12 74:7,16 75:1 80:10
80:13,20 82:9,24 83:7
83:22 84:6,10,14 95:9
95:11 104:11,17,24 105:4
105:13,22 106:16 109:14
109:15 110:2,7,15 120:24
121:8 122:23 123:3,7,13
123:20 128:8 130:12,17
131:13,18,23 132:18,22
135:18 136:2,12,19 139:7 $139: 9,17,22$ 140:4 143:1
143:6 145:6 149:17 150:8
150:13 152:6 153:12,15
154:15,23 155:13,20
156:3 158:5 164:7 170:20
172:6,12 173:19,23 174:2
174:7,15 175:5,10,17
176:7,11,19,23 177:5,19
177:24 178:4,8,25 179:8
$179: 17$ 180:3, 12, 15,24
181:6,18,23 182:4,10,18
183:2,10 185:17 186:9
186:16,21 187:6,10,15
187:19 190:19,22 191:2
191:7,11,16,23 192:4,10
192:17,23 193:10,14,19
193:25 194:6,12
Doherty's ${ }_{[1]} 21: 22$
dollar [9] 32:24 45:1,2,3 45:4 74:4 95:9,16 99:20
dollars [9] 12:6 48:20 48:24,25 50:7,9 56:8 95:10,12
done [35] 3:9 25:21 33:2

50:20 63:16 64:2,7,9,10
93:23 95:7,7 96:22 98:9
111:1 115:11 118:5
121:16,22 122:1,5 123:2 130:15 135:17 138:5
143:16 158:2,3,6,15
164:6 177:12 192:15 194:18,19
doors [1] 9:8
dot [2] 143:8, 11
dots [3] 132:5,6 143:8 dotted [2] 99:4,4
Doug [1] 4:20
Douglas [1] 9:4
down [78] 16:21 27:18
27:19 44:2 52:4 54:23
54:24 61:14 66:2 67:13
68:15,23 69:17,24 72:6
72:11,18 73:24 74:17
76:7 77:8,8 79:10 80:1
84:19 86:19 87:14 89:2
89:22 91:4,17,19 93:1,2
94:2 95:5 98:17 100:4
103:3 105:10 110:11
112:2,15 113:5 114:6,7
115:14,16 119:6,25 132:4
136:14 137:23 138:9,11
138:12 139:12 141:1,12
142:16,18 145:19,20,25
147:25 148:4 150:2
156:10 158:24 165:3,5
166:16 169:17 170:13,16
173:1 184:1 186:22
downward [4] 46:5
53:22 115:1 135:24
dramatic [1] 53:18
drastic [2] 9:17 14:8
draw [5] 107:1,22 109:21 130:20 140:12
drawing [1] 112:24
drawn [2] 85:4 179:15
drift [5] 43:11 44:18
45:13 46:20,23
drill ${ }_{[1]} 84: 18$
drive [4] 13:19 14:3,9 109:16
driven [4] 6:2,8 97:20 146:9
driver [2] 13:9,11
drivers [3] 12:10 14:23 16:12
driving [4] 10:23 12:3
146:11 186:10
drop [5] 53:18 78:15
115:7 130:25 147:25
dropped [3] 52:25 53:1 53:20
dropping [4] 52:19
102:25 103:3 131:2
drops [1] 172:25
drove [1] 16:5
due [4] 95:20 127:18 128:16 148:9
during [3] 29:17 149:7 156:15
$\frac{\text {-E- }}{\square}$
entertainment ${ }_{[1]} 14: 19$ entire ${ }_{[7]} 9: 18$ 14:8 50:5
98:21 134:17 157:17 161:11
equal [1] 139:23
equivalent ${ }_{[1]}$ 29:12
Ernst [1] 2:12
error [3] 144:12 162:3 163:4
established [1] 39:7
establishing [1] 108:20
estimate [70] 32:19,22
33:1 34:17 43:10 44:5
52:12 62:13 63:9,11
64:23 65:16 66:11 68:17
69:9,11,16 70:1,11,14
70:17,23,25 71:1,2,18
71:25 72:9 74:12 80:6
80:14 85:7 87:22 95:16
108:3,11,14,17 130:5
152:18 159:9,18,20,22 159:25 160:7,15 161:6 161:10,19,22 162:1,4,24 163:2,4,8,9 164:23 165:2 178:18 184:2 187:21,24 188:7,9 192:11,25 194:1 194:22
estimated ${ }_{[2]}$ 153:2 164:19
estimates [15] 62:11 63:5
64:8,14,19 65:1 68:22
78:19 80:24 93:14 96:8
159:21 160:2,12 193:20
estimating [5] 36:21
41:23 76:1 107:11 161:4
etcetera [2] 28:4 121:22
evening [2] 9:5 14:21
event [7] 48:10,17 49:11
49:14 50:7 53:1 173:16
events [35] 34:3 37:13
39:7 41:21 42:9,12 49:10
49:10,14,19 51:12,13
52:10,13,14,20,21,24,25
53:4,5,8,8 56:4,11,21
57:2,8,12 83:14,18 90:6
90:7 143:4 152:20
everybody [6] 1:4 4:4
15:22,24 111:24 162:11
evidence [3] 2:20 5:11 149:9
evident ${ }_{[7]}$ 101:6 171:7
172:4,17,20 173:22
174:10
exact [1] 167:22
exactly [4] 61:13 118:21
132:19 147:24
examination [1] 4:25
EXAMINATION-IN-CHIEF [1] 19:10
examined [1] 7:12
example [10] 36:19 38:9
52:16 58:9 110:9,10
135:14 162:6 174:5
192:14
Excel [2] 119:12 194:20
excellent [1] 82:14
except [4] 71:5 94:24
136:22 159:1
excess [2] 39:8 57:19
exclude [12] 97:10
110:23,24 121:20 137:24
166:14 171:1 172:21,24
172:25 179:6,22
excluded [12] 134:19 137:25 138:22,25 157:24 166:6 172:15 174:1 177:15 178:10 180:13 182:9
excluding [4] $71: 9$ 111:3 139:1 194:23
exclusion [2] 138:11 139:15
exclusions [1] 193:13 exclusively [2] 21:5 97:14
Excuse [1] 190:10 exercise [15] 41:10,16 42:18 85:6 87:8 97:8 104:3 115:22 119:12 126:12 134:4 149:4 150:22 151:21 158:8
exercises [1] 151:4
exhaustively [1] 7:12
exhibit [19] 24:2 27:9,10
27:14 29:5 41:6 61:4,11
61:12 65:2 67:11,16,24
79:21,22 84:16 86:13,18
90:13
exhibited [1] 114:8
exhibits [2] 62:18 167:25
existed ${ }_{[1]}$ 182:24
existing [2] 21:11 40:22
exit [1] 153:6
expect [8] 42:7,11,23
50:1,7 101:21 117:5 182:5
expectation [1] 39:20
expected ${ }_{[17]} 33: 11$ 62:4
62:14,22,25 63:2,7,10
63:13,19 64:4,6,20 68:19
70:24,25 80:8
expecting [3] 57:18
93:20 96:20
expense [3] 15:3 37:22 159:3
expenses [15] 13:15 17:8 37:12 40:10,23 41:15 58:2,4 95:18,24 118:2 153:18 154:5,6,8
experience [40] 2:14 6:3 6:9,10 7:13 21:3,22 26:1 26:15,17 27:18 40:3 41:19 48:8 52:17 54:7
54:10,18,21 57:18 61:21
61:23 65:3,4,5,13 73:24
92:15 100:6 116:3 118:9
153:7 156:16,17 157:1
164:10 175:1,2 176:2,3
experienced [1] 157:13
expert [2] 5:24 21:24
experts [1] 19:16
explain ${ }_{[7]} 28: 25$ 61:1

120:15,16 124:5 143:21 143:23
explained [4] 114:18
140:10 143:17 144:5
explains [1] 124:1
exposed [2] 29:17 45:15
exposure [10] 28:25 29:4
29:5,11,12,17 38:3 85:1 85:19,22
exposures [10] 85:9,16
86:6 91:15,20,23 97:22
98:12 99:2 149:23
extent [8] 42:4 45:13 60:17 92:24 93:7 101:21 107:6 122:25
external [4] 20:16 21:19 121:23 153:19
$\frac{\text {-F- }}{\text { FA } 7: 1331: 2532: 1}$

FA [7] 7:13 31:25 32:1 40:3 174:24 175:25 176:5
FA's [1] 7:14
face [1] 149:6
faced ${ }_{\text {[1] }} 13: 12$
Facilities [1] 16:3
facility [31] 1:6 2:11 4:7 6:4,6 7:4,6 9:13,15 10:6 10:25 15:1,5 20:3,7 21:11,18 22:13 25:10,13 25:18 26:11 30:13 34:16 44:13 84:25 122:11 150:10 151:2 153:25 197:3
Facility's [2] 7:9 140:3
fact [14] 7:9 44:9,12 57:6 63:4 64:23 73:13 79:23 126:20 140:21 142:4 157:2 166:11 167:19
factor [34] 33:23 35:8,10 35:24 44:4,19 53:7 60:17 60:18,20,22 61:1,5,9 66:5,8 67:10,14,16 78:19 79:14 80:18 83:5,6,8,13 89:6,9 107:14,14 131:11 131:12 140:13 159:4
factors [28] 33:22 35:2 39:12 44:20 47:24 55:1 55:5,7,14 62:10 67:22 76:12,13 77:16 78:16 82:3 84:2,4,17,20 89:20 90:12,15,15 131:17 152:10,13,22
fail [1] 11:4
failed [1] $15: 1$
fails [1] 12:25
fantastic [2] 17:6 168:7
far [5] 74:25 146:1 171:16 173:5 184:20
favourable [9] 93:15,19 93:25 94:12,14,17 96:14 96:19 99:5
features [2] 44:18 186:5 feedback [2] 122:17,18 fellow [2] 2:16 20:25 fellows [1] 2:15
felt [4] 133:6,6 137:8 156:22
Ferguson [2] 62:23 64:22
few [6] 86:14,14 94:23 118:7 148:10 156:6
fewer [3] 14:17 52:23 53:5
fifteen [1] $82: 16$
fifth [1] 117:20
file [1] 180:25
filed [1] 5:12
filing [7] 3:15 5:9 44:14 47:25 62:17 115:12 151:7
filling [1] 80:11
final [25] 36:9,22 64:23
69:20,25 70:10,22 71:16
73:9 76:9,19,22 79:25
91:7 92:4 97:14 100:4 113:9 114:19 149:18 155:21 159:6,22 171:14 172:19
finally ${ }_{[2]} 18: 1398: 7$
finance [1] 20:18
financial [2] 20:10 144:8
finds [1] 12:5
fine [7] 16:24 17:3 27:5 121:25 124:8 144:13 157:19
finish [4] 190:1,7,10,13
finished [4] 3:25 82:12
188:25 189:4
firm [1] 2:9
first [87] 2:5 8:7 17:1,16
19:20 21:5 22:7 27:10
27:20 44:2 47:22 55:25
68:15 72:20 73:2,4,12
75:18 76:21 77:19 78:1
84:15,16,22,25 85:11
91:6,21,23 92:21 98:1,5 98:15,20 102:2,17 104:7 104:14 107:9 108:5,10 110:14,20 111:10,14,16 111:17,20 112:5 113:10 113:19 115:22 116:4,10 118:11,16 119:13,19 120:13 121:10,24 125:7 140:7 145:4,4 155:22 156:10 158:25 161:13 165:24 167:7,8 175:1 176:2 177:10,22,25 179:4 180:13 181:9 182:6 183:13,23 190:25 191:12 194:18 196:11
fit [42] 107:18,22 108:1,2 109:25 113:14,20 114:22 115:5 118:11,23 123:23
124:12,14 125:1,2,2,14 128:12 129:18 131:4,8
133:16,22 134:9,17,17 134:18,21 135:5,9 136:4 136:6,8 140:8 148:22 158:9,17 178:20 194:11 194:13 195:2
fits [5] 87:5 115:13 152:7 159:9 196:3
fitted [36] 87:3 88:23

89:12 90:23 91:10 97:16
109:25 113:15,19 115:4 118:19 120:20 121:3,5,6 123:1,6,10, 11,16 130:10 131:24,25 132:2 133:4 133:10 143:9,13 145:15 145:17 149:18,20 150:3 158:12,12 181:14
fitting [3] 109:3,6 135:15 five [35] 13:9, 20,25 21:6 48:10,13 51:21 54:12 100:13 115:22 116:13,18 127:6,8,11,14,19 128:1 148:11 153:6 156:19 157:1,3 164:11,24 169:5 169:9,15,19 185:10 186:5 187:14 191:10,12 196:1
five-year [10] 120:21,22 165:21 167:20 169:5,12 173:7 191:8 192:2 195:13
flat [3] 141:2 142:17 144:21
fleet [2] 16:7 46:16
flip [1] 130:6
flipping [1] 128:25
flu [1] 8:24
focus [11] 51:15 69:7 72:8 94:8 95:24 97:1 105:5 115:17 141:19 170:14 177:9
focused [4] 116:11
138:17 156:19 172:16
focusing [1] 29:23
follow [2] 4:21 28:8
followed [3] 150:9,10 150:11
following [4] 47:14 104:20 177:3 186:6
follows [1] 24:11
force [3] 10:4 14:15 15:7
forecast [1] 132:11
foregoing [1] 197:2
forgotten [1] 2:4
form [2] 14:6 18:17
former [1] 4:20
formula [2] 191:21,24
forth [3] 128:23,25 129:1
forward [17] 7:19 8:9
52:22 54:18 76:6 83:16 103:13 105:19 107:7
113:12 119:4 152:19,24 163:21 169:11 177:1 183:23
forward-looking [1] 41:10
forwarded [1] 34:14
found [3] 84:3 116:14 117:1
four [12] 61:14 132:24
142:10,14 148:14 168:14 179:11 188:12 190:20 191:19 193:8,17
fourth [2] 92:23 116:21
Francis [1] 19:23
frequencies [8] 98:25

99:7 102:25 130:2,24
131:2 132:1 133:22
frequency [63] 49:25
52:18,22 53:19,23 87:1 87:2 97:4,11,15,19,21 97:24 100:22 101:4 102:10,13,22 103:2,7 105:12 106:20 109:24 110:9 112:8 113:10,12 113:18,22 114:25 115:2 115:6 118:9,15 119:21 119:22 128:10 129:8 130:10 131:21 134:12 135:24 136:22 137:1,3 137:12,17,20,25 144:16 144:21 145:1,10,16,18 145:21 146:10,11,21,25 147:3 148:25 192:18
front [2] 112:9 186:8 fuel [1] 13:9
full [10] 19:20 104:9 116:7 135:3 156:21,24 163:12 172:14 184:25 185:5
full-on [1] 129:12
fully [1] 156:17
funny [1] 119:9
future [23] 41:11,23,25 42:4,13,19,22,24 47:21 51:14 56:17 76:2 77:13 81:14 83:16,18 85:8,9 89:8 90:9 107:8 152:19 152:21
-G-
gap [1] 183:19
gas [1] 13:7
gather [2] 80:11 150:10
gathering [1] 26:6
general ${ }_{[2]}$ 9:5 129:10
generalized [1] 147:7
generally [5] 55:11
88:17 117:2 127:6 186:1
generate [4] 46:16 56:8
56:11 57:2
generated ${ }_{[7]}$ 38:3 44:19
61:2 84:20 127:13 149:14 187:5
generating [2] 56:6 195:7
gentlemen [2] 8:23
18:15
GISA [1] 26:5
given [1] 128:22
giving [1] 64:25
glasses [1] 23:23
glean [1] 100:15
Glynn [23] 1:18 3:22 4:2
6:15 7:25 8:4,11,15,19
15:13 17:5 18:23 23:14 23:19 24:7 155:2,6
186:14 188:18 189:9,15 190:6 196:16
goal [8] 41:20 42:17
114:2 119:19 143:13 148:14 164:9,22
goes [5] 2:4 12:2 132:9 132:12 170:15
gone [5] 53:12,12 74:25 101:25 180:1
good [23] 1:4 2:7,22 4:3
8:22 15:16,19 16:21 21:1 41:25 79:5 96:15 100:18 117:3 118:11 126:19 131:4,8 136:8 163:1 168:6,25 195:2
government [15] 12:11
26:6 63:21,24 64:3,7,12 64:18 69:18,22 70:2,6,8 71:11,17
graciously [1] 8:6 great [4] 128:12 140:7 166:15 168:16
greater [2] 14:21 16:11 green [1] 99:4
grossed [1] 58:11
group [8] 35:3 46:8,12
46:13,17,23 47:1 160:16
grouped [1] 28:4
grouping [2] 67:23 104:14
groups [1] 192:2
guess [24] 2:5 18:13
21:25 22:23 68:3 80:1 96:11 104:14 121:5 130:22 135:17 174:23 177:2 178:23 184:14,15 184:23 185:25 187:24 190:21 191:1,21 194:11 195:17
guidance [1] 3:3
guide [1] 76:17
guidelines [2] 7:17 151:8
guys [2] 96:5 168:9

-H-
H1 [3] 91:11 130:23
133:23
H12 [1] 75:17
H2 [1] 91:11
H6 [2] 75:12,16
hail [2] 49:16 50:2
half [44] 29:10,20,21 45:1
54:16 62:7 63:15 64:10
64:16 69:4,4 72:15 73:1
73:2,12 75:8,19,21 76:25
91:6,10 92:19 94:4
110:22 111:10,11,17,17
111:19,20 129:14,15
162:6,7,9,13,13,19 175:1
176:2 182:6 189:19,21
191:19
half-hour [1] 5:5
Hall [2] 11:20,21
halves [1] 150:6
handle [1] 121:23
hands [1] 5:18
happening [7] 45:20
99:8 104:5 124:4 137:13
138:17 149:2
happy [1] 43:12

hard [4] 10:17 11:13 99:3 148:10
harder [1] 16:9
haste [1] 10:25
hate [1] 189:18
head [2] 79:5,19
heading [4] $23: 12$ 24:12
28:5 31:24
headings [1] 92:13
hear [3] 15:22,24 171:18
heard [1] 197:5
hearing [7] 1:5,5 2:19
4:13,13,15 5:15
heels [1] 7:5
height ${ }_{[7]}$ 160:13,21,23 161:7,10 162:12 188:2
heights [2] 160:20 161:9
help [8] 74:22 76:17 93:13 108:24 110:8 127:7 143:21,22
helping [1] 3:3
Hennebury [1] 2:10
hereby ${ }_{[1]}$ 197:2
high [16] 14:5 45:14,22 46:4 106:14 114:13 126:18 127:2 142:14,21 166:9,11 167:10,22,23 191:17
high-risk [2] 13:23,25
higher [13] 7:15 13:10
36:25 37:25 44:25 45:5
45:6,10,15 46:2,16 93:20
99:17
highest [2] 167:6 179:12
highlight ${ }_{[1]}$ 156:7
highs [11] 166:7,7,17
177:15 178:10 179:23
180:1,9,12 181:10 194:23
hiring [1] 40:14
historical ${ }_{[3]}$ 36:14
41:21 72:13
historically [2] 36:24 64:2
history ${ }_{[3]}$ 36:7 143:5,7
hit [2] 11:13,14
holders [1] 49:15
hope $[1]$ 2:3
horse [1] 158:17
hour [2] 189:18,21
hours [4] 3:16 5:4,6,8
house [1] 15:5
huge [1] 103:15
hurricane [1] 50:2
hybrid [1] 21:16
hypothesis [3] 126:13
126:14 194:17
-I-

IBC ${ }_{[2]} 27: 4$ 34:14
IBNR [9] 81:6,19,20,22 81:24 82:2 96:10,13 99:23
ice ${ }_{[1]} 50: 3$
idea [15] 33:22 41:25 52:8 77:17 92:9,17 93:16
94:21 126:22 128:19
163:2 165:14 169:1
189:10,16
ideal [1] 114:16
ideally ${ }_{[1]}$ 143:13
identification [1] 157:7
identified ${ }_{[16]} 25: 25$
26:13 28:19 36:6 37:4
42:25 106:8 108:3 115:14
126:10,20 138:1,7 152:9
152:10 166:24
identify ${ }_{[13]} 27: 2$ 43:17
49:19 52:2 106:5,18
126:17 127:7 146:14
156:6 158:1 163:17 168:13
ignored [1] 142:7
ignoring [1] 142:4
imbedded [1] 45:17
immediately [3] 4:21 73:16 167:16
impact [43] 9:17 14:8,16
14:19,22 15:8 44:20
45:22 48:9 49:17,20 52:6 67:7 78:25 94:18 97:13 100:3 101:10,11 102:10 102:11,12,19,20 103:15 117:10 121:22 128:16 129:17,23 133:10 139:20 151:1 154:8 171:14,25 182:15 183:21,22 184:2 184:20 185:16,20
impacted [3] 50:6 51:1 54:14
impacting [2] 49:4,11
impacts [5] 43:10 51:4 52:3 54:17 112:3
impaired [1] 14:23
implication [2] 153:13 159:8
implied [5] 35:8,10 66:4 67:10 100:1
important [10] 53:3 54:8
113:25 119:1 135:1,5
141:7 156:22,23 157:9
impression [1] 83:25
improved [1] 14:7
include ${ }_{[16]} 36: 10,13$
40:10 58:22 62:16 66:25 68:18 77:13 93:1 97:10
121:20,21 172:23 175:14 175:25 180:9
include-H2 ${ }_{[1]}$ 178:5 included ${ }_{[14]}$ 34:6 36:12 50:24 58:19 59:1,8 65:4 112:11 136:24 139:4,11 139:25 171:25 176:17
includes [6] 37:11 41:14 71:11 154:4 174:24 179:5
includes-H2 [1] 178:3
including [3] 40:13

95:23 159:2

inclusion [2] 133:9 154:8
income[3] 28:3 108:15 108:18
incorrect [1] $32: 1$
increase [52] 7:7 9:14
9:20,22,23,24 10:1,2,4,7
10:8,9,11,14 11:9,10
13:12,17 14:7,14,25 16:4
16:10 17:17,22 44:5,7
53:15 57:7,17,19 58:16
58:19 59:1,2,13 63:10
77:1,3,5,7,20,21,22,25
78:3,7 85:24 87:10 90:10 124:18 147:12
increased [6] 10:18 55:6 75:14,19,22 178:18
increases [3] 16:14
45:17 75:25
increasing [5] 55:13,14 130:24 144:22 157:13
incurred [3] 42:12 81:7 81:17
indemnification [4]

37:13 40:9 41:14 153:22

indemnity [34] 31:21
32:2,6,8 35:4,23 37:11
37:16,21,24 38:23 39:14
39:22 40:4,8 57:23 65:7 65:11 81:5,6 93:5,11 95:17,20,25,25 96:1,4 117:25 118:1 153:13,14 153:25 159:2
independent [4] 16:8 16:12 26:20,21
independently ${ }_{[1]}$ 153:23
index [1] 13:13
indicate [5] 10:19 83:24
114:11 169:17 177:8
indicated [1] 170:9
indicates [1] 57:16
indication [18] 25:6 41:9
49:22 50:23 54:22 67:2
69:6 70:5 78:24 88:1
95:19 135:8,11 139:24
152:15 164:12,16 175:13
indications [7] 22:12,14 54:11 100:13 133:19 139:21 140:3
indicator [3] 111:7,9 117:3
individual ${ }_{[25]} 14: 2$
26:22 28:13,18 31:2
32:20 33:2,20 34:6 35:5
46:11 48:3,4 49:2,17
52:9 53:9,21 68:5 70:8
76:20 81:2,20 88:16 89:24
individually [1] 162:20 individuals [1] 14:20 indivisible [9] 27:22 28:1 66:18 67:9,14,23 69:15 71:21 85:17
industry ${ }_{[33]} 2: 15$ 9:11
9:16,18,25 10:5 11:12
12:7,23 13:3,5,6,6 14:19
15:6 26:14,23 37:8 52:17
76:16 86:21,23 92:1,6

95:15,17,18 96:4,7
115:10 116:3 153:21 154:3
inflation [2] 10:24 46:21
influence [7] 54:17
60:17 133:23 135:7,11
138:20 142:6
influences [3] 131:12,22 164:16
influencing [1] 49:21
influential [5] 133:8
138:24 157:23 158:23 170:4
inform [1] 11:22
information [27] 5:10
5:23 26:3,7,7,24 33:24 34:14 62:20 72:10 77:24 100:15,18 103:19 105:18 105:19 149:12,14 151:8 151:15,23 152:4 154:19 155:22 156:21 195:10 196:4
inherent ${ }_{[1]} 3: 5$
initial [8] 21:12 29:21
102:19 103:17 118:5
121:12 124:3 161:19
injury [51] 10:22 27:23
52:18 53:11 54:23 55:12
66:8,15,20 69:9 70:12
70:16,20 71:4 72:14 80:3
87:9,11 88:2,22,25 89:5
90:23 98:20 100:21
104:16 105:2,5 112:8
117:7 128:7 129:7 130:1 145:2 147:12 164:14 167:21 170:14 171:1,8 171:11 172:3 173:18 175:15 177:4,7 184:19 186:3 187:4 192:19 194:5
input [1] 47:23
inside ${ }_{[1]} 21: 15$
insight [1] 42:21
insofar [2] 131:10,16
instance [7] 45:23 47:3
47:4 49:16 50:21 89:9 194:17
instances [1] 95:3
instead [13] 42:12 44:25
45:3 48:15 56:6,9 61:22 66:16 72:5 77:9 118:17
148:2 185:5
Institute [4] 2:16 21:1 22:15 150:15
insurable [1] 37:14
insurance [22] 1:7 2:14
10:3 11:4,17,20,25 12:4
12:9,23,25 13:4,10,17
14:1 22:18 26:3,8,14
37:8 41:13 197:5
insure [1] 12:25
insured [7] 12:7 13:3
29:6,9,13 43:8 92:18
insurers [2] 6:5,7
intend [2] 5:20 43:17
intended [1] 40:19
intercept ${ }_{[2]}$ 120:2,6
interested ${ }_{\text {[5] }} 78: 23$
133:18 135:6 147:18 171:18
interesting [1] 141:13
internal [1] 153:19 internally [2] 21:17 121:11
interpret [3] 127:10 146:19 179:13
introduce [5] 2:3 48:1 52:5 116:9 143:19
introduced [5] 50:25 101:13 116:24 173:10 182:23
introducing [2] 102:17 148:9
introduction [1] 101:14
intuitively [1] 135:22
investigate [1] 16:19
investigations [1] 16:20
investigative [1] 11:2
involved [1] 58:2
involves [1] 32:21
isolate [1] 50:4
issue [10] 12:8 15:4 19:14
23:4 60:22,23 147:9
168:18 173:2 175:4
issues [1] 27:2
it'll [2] 88:18,19
itself [33] 25:3 41:19 43:6
51:20 56:14 61:10 67:19 68:17 88:20 90:20 99:20 106:17,24 109:3 112:19 112:23 113:3 119:11 120:7 129:18 134:9 143:10 145:24 149:3 158:19 159:23 163:16 169:16 170:10 180:17 182:2 185:7 194:16
-J.

Jacqui [2] 1:18 3:22
jagged [3] 103:23 105:17 105:18
jaggedness [1] 129:19
January [1] 111:17
Jennifer [2] 2:8 181:1
job [2] 12:11 34:17
jobs [1] 13:5
John's [4] 9:6,11 197:7 197:10
Johnson [7] 2:21,23 6:22
7:2 155:4,8,25
joined [2] 4:4 21:12
judgment [2] 157:5 186:1
Judy [2] 197:2,12
July [14] 4:11 10:16,20 29:19 87:20,25 88:6,18 88:18,19 89:15,20 90:1 90:3
June [16] 25:11 62:2
63:12 65:6,16 66:12 69:1 72:23 73:6,12,15 78:22

79:12 87:19 111:18,18
jurisdiction [4] 25:14 25:19 116:15,23
jurisdictions [7] 66:23
67:3 76:14 115:24 116:1 117:2 168:12
justified [1] 7:10
justify [1] 11:10
-K-
keep [8] 16:20 54:8 79:4 79:6 96:25 138:11 165:5 184:10
keeps [2] 17:8 169:12
Kevin [2] 2:8 19:11
Key [3] 37:7 106:11 107:9
kind [21] 40:15 74:20 85:24 98:9 100:5 103:25 104:3 114:3 116:19 125:3 129:13 132:23 134:6 147:1,16,23 150:11 152:4 156:5 161:5,24
kinds [2] 28:2 144:10 knew [1] 50:25
knock [2] 142:9 167:15
knocked [4] 141:10 142:14,15 167:19
knocking [3] 127:1,2 141:24
known [4] 33:6,12 40:20 40:21
$\overline{\text {-L- }}$

Labrador [3] 7:8 197:7 197:10
Ladies [1] 8:22
large [9] 7:6 48:5,15 49:4 49:13,17,18 50:2 147:2
larger [1] 161:2
last [10] 7:6 13:15 16:4
17:17 44:14 55:18 57:17 73:13,23 157:8
late [1] 3:18
latter [2] 116:12 157:15
law [3] 2:9 11:16 42:25
lawyer [1] 2:24
LDFs [1] 76:17
lead [1] 83:4
leads [1] 165:1
lean [1] 132:23
learn [1] 100:19
least [16] 32:23 60:24 61:1 83:25 100:14 102:23 103:11 106:25 107:23 109:7 152:22,24 153:6 159:24 194:22 195:12
leave [3] 140:21 141:5 196:10
leaving [2] 191:5,15
led [1] 123:17
$\operatorname{left}_{[6]} 1: 103: 15$ 107:3 140:2 189:21 191:20
legislation [3] 102:17

182:16,24 \quad local $_{[1]} 12: 1$
legitimate ${ }_{[2]} 119: 3$ 178:20
less [3] 46:3 78:13 103:3
letter [1] 5:3
level ${ }_{[28]} 7: 15$ 25:23
36:20 39:17 41:9 43:20
43:22 44:1 47:19,22
50:23 58:10 62:7,8 63:15
63:15,16,21 64:7,12,16
69:22 70:2,4 78:8 86:3
89:15 90:1
levels [6] 33:21 42:6 44:8 81:8 85:9 142:21
liability [17] 9:21 27:21
44:3,6 47:2,7,10 54:25
60:6,12 63:8,22 70:9,19
71:1 85:13 86:5
liable [1] 9:1
license [1] 12:4
life ${ }_{\text {[4] }} 74: 10$ 92:21 95:1 95:4
life-to [1] 32:12
likely [1] 166:12
likewise [1] 166:15
limit [10] 45:1,2,3,4,5,10 45:13,14,24 47:8
limitations [1] 128:14
limits [2] 44:25 45:23
limousine [5] 1:8 4:8
9:13,16 197:4
line [74] 63:21 64:3,7,12 64:18 69:19,22 70:2,6,8
71:11,17 85:3 99:4,5,6
99:22 100:2 107:1,19,22
108:1,2 109:21,21,25,25
110:5,6 112:24 113:4
118:14,17,22 121:3 123:6 123:10,11 129:18 130:9
130:10,20,20,23 131:25
132:6,16,19,25 133:5,13
134:20 135:13,15,16
136:1 138:14,16 139:1
141:3 142:16,17 143:11
157:7,10 158:9 167:9,9
167:13 169:18 171:21
181:14,16 183:25
linear [2] 147:8 159:24
lined [1] 184:12
lines [11] 50:14 103:23
109:22 120:20,20 121:6
123:1,17 145:8 179:15
193:18
link [30] 62:4,6,21,24
63:1,5,11,16 64:6,9,15
68:16,21 69:10,12,16
70:1,10,18,23 71:2,17
71:24,25 72:8 75:4,8,23 80:6 82:3
listed [3] 28:13 30:17 35:2
listen [1] 12:1
live ${ }_{[1]}$ 19:23
living [1] 14:3
load [1] 48:16
loading [1] 47:24
longer [3] 93:5 157:12 189:10
look [121] 7:19 15:19 16:3 16:17 17:22 26:25 33:20
36:7 41:10 42:19 44:2
44:24 45:20 46:9 49:7
51:14 54:3,6,7,25 58:17
58:18 59:19,22 65:18
67:8,17 69:24 76:5,15
76:16,17 78:1 79:7,8,11
79:11 80:22 83:17,19
85:1 87:8 94:3,23 96:16 96:25 97:12 98:18 99:12
100:10,11 102:21,25
103:22,24 104:4,6,9
105:9,16 108:7,23 113:9
114:4,5 115:24 116:2,4
116:17 118:8,12,21 119:5 119:18,25 121:17 123:21
125:9,10,11,22 126:24
130:9 134:4,6 136:5,13
138:9 140:6,19 141:1,12 141:16 144:19 145:25
146:21 147:6,23 148:21
149:19 152:20,24 154:13
156:23 157:16 159:16
162:20 165:8,13,16,17
165:19,20 167:2,5,19
169:4 171:15 174:9
183:16 184:22
looked [9] 50:5 52:13,14 73:18 135:9 136:7 145:1 149:9 177:12
looking [59] 23:21 24:1
24:15 30:6 36:2 41:18
41:19 42:14,16 48:7,9
75:3 97:3 100:14,19,21
101:5,6 102:22 104:1
105:2 106:22 107:13,17
114:7 115:19 116:20
117:12 120:11 124:8
126:7 128:24 131:10
135:2 141:8 146:13,15
146:20,24,24 147:21
150:1 152:5,7 153:25
155:11,19 159:10 160:5
164:3 166:4 167:1,3
180:21 186:12,18 187:21
193:7,8
looks [5] 129:2 161:24 179:14,21 187:13
losing [1] 1:13
loss [118] 28:2 33:21,22 35:10 37:4,7,12 38:2,6 38:11 39:11 40:4 48:14 48:16 51:16,20,22 52:4 52:6,8 53:6 54:21,25
55:12 56:1,18 57:1,10
57:15,20 58:23 60:18,19 60:21 61:19 62:5,14,22 62:25 63:2,7,10,13,19 64:4,6,20 66:4 67:10,18 68:19 70:24,25 80:8,18 83:5,6,8,12 86:20,22 87:3,22,23 88:11,23 89:5 89:11,17 90:23 91:2,9 92:2 95:17,23 97:5,12 97:16,19 98:7,8 100:5 101:2 102:15,20 105:11 105:25 106:1,20 107:3,8

109:22 124:4,17 132:2
145:12,17,17,25 146:5,8
146:13,16,20,24 147:21 149:18,24 150:2,4 159:2 159:5 166:8 174:25 175:2 176:1,3 192:25
losses [10] 15:2 38:9 49:18 53:20 56:15,24 72:22,22 75:14 98:15
lots [2] 11:4 105:16 louder [1] 15:24
low [10] 55:8 114:13 126:9,9 142:15 166:9,13 167:23 181:9 191:17
lower [10] 63:11 70:1,17
71:1 86:7 93:19 132:11 139:24 140:3 141:18
lowered [1] 139:16
lowering [1] 141:4
lowest [2] 167:7 179:12
lows [10] 166:7,8,17 177:16 178:10 179:23
180:1,9,12 194:24
luck [1] 48:12
$\frac{-M-}{C}$
magnitude [1] 84:9
$\operatorname{main}_{[3]} 99: 10$ 106:21 125:6
majority [1] 9:10
makes [3] 16:9 144:18 144:20
management [4] 15:4 20:16 151:3,19
management's [1] 122:10
Manager [1] 9:5
manifest [2] 56:14 149:3
manner [2] 12:20 59:17
March [4] 4:5,10 62:18
68:21
marginal [2] 10:4 14:10
Martin [1] 2:9
mash [1] 47:10
material ${ }_{[1]} 18: 21$
mathematical [1] 107:11
mathematics [3] 107:15 108:12 109:16
matrix [7] 77:24 78:5
93:13 97:3,7,20 106:20
matter [7] 5:18 19:1 43:9 111:9 116:22 125:8 197:3
matters [2] 3:5 5:13
may [36] 5:3 15:7 16:20 44:25 45:2,2,4,21 48:5 49:8 51:17 52:5 82:22
85:7 95:2 103:11 110:8
117:9 118:5,6 122:4,18
122:19 131:6 133:2,13
137:3 152:25 153:22
155:18 158:21 162:25
174:8 180:4 188:24
189:11

McCarthy [7] 4:20 8:6 8:9,16,21 9:3,4
mean [18] 40:5 106:14
108:19 123:6 127:8
129:21 136:4 148:25
151:20 160:22 178:22
180:16 189:11 190:2,9
195:2,2,22
meaning [3] 82:4 112:10 133:9
meaningful [1] 117:19
means [13] 37:19,24
75:12 94:13 108:22 110:6 126:19 127:10,14 157:13 160:24 169:24 197:9
meant [3] 83:8 153:8 183:1
measure [11] 37:9
123:23 124:7,10,20
126:14 134:17 161:13,14
162:10 172:22
measures [3] 118:12 134:17 164:22
measuring [1] 160:18
mechanical [6] 107:21 108:11 119:11,18 168:13 170:8
mechanics [1] 106:10
medical [1] 28:3
member [1] 5:2
members [4] 2:17 25:17 25:23 122:14
Memorandum [3] 22:8 22:22 23:12
mentioned [5] 25:25 30:3 61:19 147:15 170:22
messing [1] 137:21
Method [17] 62:4,5,6,6
62:23,24,25 63:2,2,8,10 63:12 64:5,15,20,22 71:3
methodologies [4]
24:13,17 62:3 64:24
methodology [5] 62:15
62:24 65:14 69:10 75:24
metric [4] 37:7 125:23 128:17 170:11
metrics [1] 194:13
mic [1] 19:4
midway [2] 42:16 88:3
might [33] 41:23 42:20 42:21 45:23 48:3 49:16 51:14 52:3 54:1 91:7 93:8 95:5 96:16 99:12 103:15 107:9 116:20 118:3 121:19,21 133:1 137:14,20 138:2 142:13 143:21 146:16 147:6 165:14,15 171:24 181:1 186:22
Millimans [1] 3:2
million [15] 36:21,23
45:1,2,3,4 48:20,24,25
50:6,9 56:8,11 81:23,23
mind [4] 1:13 101:7 104:5 165:8
mine [1] 12:16
minimize ${ }_{[1]}$ 109:8
minus [14] 93:24 94:9,12
99:9,17,24,24 129:1
141:17,18,20 192:14 195:1,17
minuses [1] 114:8 minute [4] 11:19 62:9 65:15 101:3
minutes [1] 168:11 misinterpreting [1] 125:21
misleading [1] 160:9
missed [1] 121:19
missing [3] 74:1 114:15 147:1
model $_{[42]} 21: 1652: 8$
86:20 87:4,11,22 97:5
112:9,11,13 113:15,23
114:2,11,14,20,21 115:2
115:4,4 118:22,23 119:3
120:7,14 122:3,19,20
124:8 125:1 128:10,15
129:5 132:7 143:14,23
148:10 149:13 150:2
157:24 159:5 173:3
modelled [2] 86:22 92:7
modelling [9] 110:18 120:5 137:1 147:4,5,7 147:16 148:23,23
models [12] 51:2 87:1 97:15 115:12 121:14 122:7 123:23 124:9 135:2 144:10,17 170:23
moment [5] 1:13 15:18 105:3 174:19 185:24
momentarily [2] 1:20 2:19
money [3] 17:9 46:3 58:1
month [1] 78:25
months [23] 29:9,20 73:8
74:5,5,5 75:12,13,16,17
76:3,4,24,24 77:3,18
78:2,6,9,22 92:19 165:22 192:5
morning [10] 1:4 2:7,22 3:1 4:3,5 8:22 15:16 196:11,14
Moss [2] 197:2,12
most [22] 54:12 78:17 94:4,19 95:1,6 96:21 107:24 112:15 113:25 116:17 128:1 135:9 153:6 156:19,25 157:3 164:24 167:9 168:12 171:20 191:10
motor [3] 12:24 116:2,3 motorist [2] 71:12,14 Motorists [1] 71:10 move [16] 51:12 54:5 55:14 61:11 70:6 82:25 83:20 84:21 85:6 90:6 90:18 112:2 156:10 165:21 170:13 177:1 moved [1] 100:12 movement [1] 76:20 moves [1] 61:25
moving [6] 52:22 53:14 89:7,13 153:21 169:11
Ms [22] 4:2 6:15 7:25 8:4 8:11,15,19 15:13 17:5 18:23 19:15 23:14,19 24:7 155:2,6 186:14 188:18 189:9,15 190:6 196:16
multiple [2] 49:15,20 multiplications [1] 79:18
multiplied [1] 145:18 multiply [4] 77:10 79:14 79:17 87:2
multiplying [2] 77:16 97:17
must [2] 11:20,22
-N-
name [5] 1:9 9:4 15:16 19:21 180:25
names [1] 2:4
narrow [2] 48:7 134:10
natural [1] 188:17
nature [1] 20:6
near [3] 40:2 72:18 134:11
nearly [2] 13:18,19 neat ${ }_{[1]} 111: 23$ necessarily [3] 67:5 112:23 166:21
necessary [5] 13:2 36:25 121:17 133:6 134:3 need [20] 18:22 23:23 41:12 42:22 43:2 70:3 81:17 85:8,10,23 86:1 90:10 99:13,16 111:9 140:15 150:24 151:19 152:16,22
needed [1] 13:14 negative [4] 14:19 81:15 82:1 114:10
neither [1] 54:19
new [6] 1:7 12:19 46:15
133:13 163:20 183:25
Newbury [1] 2:8
Newfoundland [23] 7:8
15:18 22:12 40:8 61:23 63:3 66:25 67:6 71:11 81:13 84:24 85:15 86:22 86:23 92:6,14 95:14 103:8 115:10 130:3 151:7 197:7,10
Newman [1] 1:18 newspapers [1] 4:9 next [27] 24:14 27:1 55:3 69:11,18 72:11 73:6 74:17 76:21 77:2 78:24 89:21 91:11 94:23 99:18 111:4,12 112:20 136:14 138:12 149:4 157:4 165:5 165:5 167:11 187:18 191:5
Nine [1] 26:10
noise [4] 109:2 127:13

148:9,23
non-private ${ }_{[12]} 25: 10$ 25:15,20 61:23 63:3 65:3 65:11 66:9 68:22 69:3 71:15 81:12
none [2] 51:5 180:5
nonetheless [6] 49:6
54:22 102:21 103:19
131:7 151:22
normal [2] 5:4 140:14
normalized [1] 99:1
normally [1] 126:13
note [2] 7:10 180:21
noted [2] 75:25 189:25
nothing [3] 12:6 33:19 120:7
notice [6] 4:8,11,14,16 70:12 111:14
noticeable [1] 141:6 notification [1] 9:25 notify [2] 11:20 12:24 notwithstanding [1] 57:6
November [4] 1:1 5:1 197:5,11
now [88] 2:2 3:15,23,24
5:18 10:21,22 15:2 18:13 23:3 50:11 51:24 52:24 54:6 56:1 58:16,19 66:12 66:20 67:4,15,17 69:18 72:6 73:24 75:2 77:9 82:12,25 84:22 85:5,6 91:12,17 92:8 93:21 98:16 99:19 100:7 101:4 101:9,25 104:2 112:17 115:13 117:20 119:10 127:8 129:6 130:5 133:14 134:15,17,21 136:22,23 137:22 138:14 141:8,13 145:1 147:2,13 148:11 150:8 151:2 152:12 163:14,21 166:22 167:7 168:2 169:3,17 172:13 174:5 177:1,4 181:13 182:13 188:13 190:3,20 191:15 195:20 196:5,10 196:14
nuance [1] 166:22 nul [3] 126:13,14 194:17 number [41] 26:13 29:6 29:8 31:8,17 38:3,13 43:16 44:23 48:2 49:17 52:25 53:1 58:17,17,18 60:7 72:20 76:10,12
81:16 86:2 88:14,20
95:15 98:4 104:7 107:21
111:24 114:9 123:16,21
124:21 125:4 128:22
141:20 142:20 144:17
160:20 164:21 168:4
numbers [4] 39:3 69:13
76:8 91:21
-O-

Oake [1] 1:23
object [1] 190:3
objections [2] 10:11 19:16
obviously [9] $34: 7,11$
41:14 45:15 65:23 102:11
136:7 164:15 165:6
occupations [1] 13:25
occur [6] 42:8 50:16 56:5 56:12 76:7 89:4
occurred [30] 34:3,4,15
36:11 37:14 41:22 44:11
51:13 52:10,20 56:10,21
56:22 57:12 72:25 73:2
73:11 75:7,18 81:9 83:11
83:14,18 88:3 89:14 90:7
90:8 101:9 152:21 156:15
occurring [1] 57:9
October [1] 4:14
off [11] 16:18 21:4 118:14
121:23 127:6,19,23
166:14 178:9,12 195:6
Officer [1] 20:10
offsets [1] 81:16
often [3] 48:6 49:23
127:20
Oliver [35] 2:2 7:12
62:19 84:2 125:23 150:10 151:12 152:1 153:3,17
154:13,16,24 155:14,23 156:11 164:2,19 165:19 167:20 172:18 173:6
174:18,21 175:15,23 176:15 182:15 183:8 184:19 185:15,25 186:12 187:3 190:21
omission [3] 143:25
144:12 146:23
omitting [1] $144: 2$
on-level [5] 56:24 58:8 58:25 59:24 90:12
once [18] 10:6,13 11:11 11:25 48:11,11,18,21,23 50:8 94:16 108:2 110:5 121:22 122:5 138:6 148:7 169:14
one [142] 4:25 8:10 10:15 11:11,15 15:22 16:13,16 17:13 21:10 24:19 27:1 27:17,20 28:5 29:13 31:2 45:24 49:14 51:16,18 52:4,6 53:24 55:2,4 57:11,21 72:5 73:9,16 74:20 75:5 76:21 78:23 79:16 87:17,20 91:11 92:18,21,23 97:6 98:15 98:20 99:10 102:8 103:5 103:11,25,25 106:5,21 109:1 110:11 111:5,12 111:14 112:2 113:2,16 113:19 114:3 115:1,7 116:10,13,21 117:21 120:22 121:3 123:11,23 124:8,24,24 125:7,7,11 126:4 127:15 128:18 129:14 131:11,22 132:11 132:16,16 133:11,12,14 135:10 136:9,24 138:8 138:12,18 140:22 141:10 141:13 143:23 144:18 146:17 147:14,17 148:3

154:19 159:24 162:15 163:23 164:16,17 165:1 165:10,24 167:14,16,17 167:20,24,24 168:16 169:20,24 170:3,5 172:17 173:5 177:25 179:13 180:19 181:7,9 182:8 183:23,23 186:22 188:8 191:15 195:21,22 196:2
one-third [1] 72:3
one-time [2] 130:25 147:24
ones [12] 108:24 113:9
120:4 127:4 142:15,15
144:4 162:19,23 167:6 170:24,25
onset [3] 61:19 166:23 170:12
Ontario [1] 19:24
onto [1] 5:10
onward [1] 68:4
open [3] 92:22 93:7 98:24
opening [4] 3:25 4:22 5:217:18
operate [5] 11:7,17
12:21 16:10 26:4
operating [1] 7:7
operation [1] 46:11
operator [5] 9:9 11:16 11:22,25 13:24
operators [4] 7:7 10:5 14:10,15
opinion [1] 84:4
opportunity [4] 50:19 52:1 96:25 106:5
opposed [5] 49:11 56:18 125:7 141:11 191:22
opt [1] 14:20
opted [1] 187:22
options [5] 111:25 113:9 118:6 120:1 122:4
optometrist ${ }_{[1]} 74: 22$
or-H2 [1] 149:21
oral [2] 4:13,18
orange [3] 98:23 99:21
99:25
order [5] 1:5 8:5 15:5 77:9 84:9
organization [1] 21:9 organizations [2] 21:7 168:5
original ${ }_{[2]}$ 62:16 138:4
Otherwise [1] 55:11
ought [1] 138:21
ourselves [3] 84:1 122:8 126:14
outcome [1] 158:24
outlier [7] 110:25 138:20 138:24 158:1,22,23 166:22
outliers [16] 111:4 133:3 133:7,8 138:2 141:15,25 157:11,21,23 158:15 166:7,24 168:14 169:22

179:18

output [4] 87:4,22
119:10 140:6
outside [3] 113:8 138:8 141:22
outsourced [1] 21:15
outstanding [2] 12:5 32:13
over-parametize [1] 128:15
overall ${ }_{[15]} 7: 14$ 9:18 15:8 27:12 46:17,20 54:7 55:12 92:10 121:9 162:2 162:17,21,22 165:17
overlap [2] 137:16 165:24
overlay [1] 118:2
own [7] 15:5 100:11 116:16 122:5 172:3 181:14 196:6
owner [1] 12:19
owners [1] 11:6
ownership [1] 151:17
Oxford [1] 1:18
$\frac{\text {-P- }}{\frac{\mathbf{P}_{[14] ~ 125: 11,24 ~ 126: 177}}{}}$
$\mathbf{P}_{[14]} 125: 11,24$ 126:1,7 126:8,18,24,25 127:2,6 129:10 140:13 152:8 172:22
p.m [8] 97:18 109:12 123:19 136:18 150:12 158:4 179:7 196:22
package [6] 27:9,13 84:22 90:21 104:13 105:3
page [39] 22:21 23:6,10
23:21 24:1,14,15 27:12 28:24 40:2,3 41:3 68:14 68:14,15 69:18 74:17,21 79:10,25 84:21 89:22
90:21 91:3,17 92:8 98:19 110:14 118:16 136:15 145:4 150:1 156:10 165:5 165:6 170:19 186:17,20 190:19
pages [6] 61:14 104:15 104:20 136:17 170:17 188:13
paid [7] 12:15 17:16 33:10,11 39:21 95:1 99:20
pain [10] 101:12,16,17 101:18,22 102:4,7,14 183:3,5
panel ${ }_{[2]} 4: 4$ 8:22
Pantaleo [2] 2:12,13
paper [1] 79:7
paragraph [8] 156:13
157:4,6,6 158:25 186:6 187:1,18
parameter [63] 107:12 107:13 108:3,4,12,14,17 111:5,13 112:14 120:9 124:19 127:12 129:24 130:5 140:15 141:5 143:25 144:1 147:2

159:10,15,18,20,21,25
160:3,7 163:5,7,10,16 163:20,21,23 164:10,15 164:18,23,23 165:2,14 166:3 168:20 169:1,16 171:3 172:21 174:1,24 175:25 178:17 180:7,8 184:23 185:6,7 187:21 187:25 188:7 192:12,25 193:21
parameters [16] 124:10 124:21,22,25 125:4 127:1 127:4 128:14 148:20 153:2 161:4 168:7,22 169:8 170:24 193:20
Pardon [2] 8:3 189:2 part [35] 18:17 19:17 21:9 24:10 32:22,25 34:17 41:14 45:12 65:5 84:24,25 95:1,6 96:21 101:16 106:11 107:9 108:10,20 113:21 119:10 120:6 125:9 128:1 136:20 149:4 151:11 152:12 156:11 157:15 170:8 177:8,10 182:14
partially [1] 32:23 participating [1] 7:19 particular [45] 22:17 27:10,13 29:7,18 41:17 43:21,23 47:25 49:1 51:6 57:5 61:4 72:14 74:11
76:19 78:1,5 81:11,11 83:10,14 96:17 98:16,19 100:20,22 106:19 111:2 112:7,8,14 115:12,15 117:20 118:4,7 123:24 125:2 129:4,23 133:18 137:24 138:3 155:12
particularly [6] 26:22 48:5 158:20 164:11 170:9 180:11
parties [2] 2:2 60:23
partner [1] 121:23
party [17] 21:19 44:3,6
47:2,7,10 54:24 60:6,12 63:8,22 70:8,19 71:1 85:13,17 86:5
passed [1] 15:1
passenger [15] 25:10,15 25:16,20,20 61:24 63:3 65:4,12 66:9 68:23 69:3 71:15 81:12 115:25
past [8] 15:2 42:1,3 43:3 51:13 85:7 143:19 156:13
pattern [1] 171:23
patterns [3] 156:15 157:8 171:12
Paula [1] 2:1
pay [12] 11:8 13:10 16:18 36:7,22 37:10,20 47:21
56:20 58:1 82:7 83:11
paying [3] 10:25 37:13 57:23
payment ${ }_{[2]}$ 93:5,11
payments [8] 32:9,13
32:21 39:5,22 72:23 74:10 95:5
payout [2] 37:24 40:19 penultimate [1] 73:22 people [12] 11:2 100:24 108:16 160:13,15,16,20 161:17,18 162:14 188:3 188:10
people's [1] 161:9
per [15] 16:5,6 38:6,8,8
38:11 50:9 53:1 97:24
97:25 98:15 99:20,22
103:2 130:4
percent [77] 7:14 9:21
9:21 10:7,8,10,13,13,15
10:19 11:8,10,15 39:21
40:18,22 44:7 46:22
51:23,24 52:7 57:7,11
57:15,17,20,21,24,25
60:9 75:14,20,23 77:2,4
77:6,6,7,20,22,23,25
78:3,8,14,16 88:12,13
90:11 93:18,20 94:10,12
94:13 124:1,5 127:7,9
127:11,14,19 128:1,12 130:4 139:3,5,10 140:8 140:14 147:13 172:23 178:12,15 192:14,20 194:5 195:1
percentage ${ }_{[4]} 60: 5$
126:1 178:11 192:9
percentages [1] 193:18
perfect [4] 75:2 110:17 133:22 135:5
performance [1] 37:7
performed ${ }_{[1]}$ 21:17
performs [1] 129:14
perhaps [10] 10:24 15:23
49:7 84:2 100:24 144:23
189:18,23 190:14 195:18
perils [1] 86:16
period [148] 29:7,14,18
31:3 39:9 41:11,20 42:14
42:15 48:7,10,13 49:21
51:18,21 52:15,23 54:8
54:9,10 56:17,17 65:23 72:20 74:11,13 75:15,17 75:21 76:2 77:2,4 78:2,6 78:7,9,22 79:3,15 83:15 83:16,18 91:4,23,24 97:10 98:1,16,21 100:10 100:20 103:1,25 104:1 110:21 112:18 116:25 130:24 131:21 132:9,11 134:3 135:4,6 137:14,15 138:15 146:6,17 148:1,3 148:13,15,16 152:19,21 156:16,17,20 157:1,2,13 159:12,14,15,17 160:11 163:6,9,13,17,24 164:4 164:11,20 165:7,8,20,21 165:23 167:4,11 169:4,5 169:19 171:8 172:7,8,20 173:2,4,7,7 175:18
177:12,22 179:4,5 181:4 181:15 183:23 185:1,4,5 185:8 186:1,2 187:5,14 187:22,23,23,25 190:25 191:6,8,13 192:16,19 194:15,18,23 195:13,14 195:17,19,24 196:3
periods [90] 51:21,25
54:20 57:3 73:15 74:1 76:1 77:10 81:21 87:6 97:9 98:22 101:1,8 102:23 103:12,13,17 107:5,8 110:21 112:3,4 113:8 115:18,19,21 116:8 116:13,17,18 117:1 118:7 118:10 119:23,24 121:18 124:6,13 130:21 131:5 134:19 135:16 136:24
137:2,7,13,16,22 142:20
144:17 146:3,14 148:17
149:8,23 153:4,8 157:12
160:3,6 163:11 164:14
165:4 166:4 167:20,24
169:11 171:2 173:6,8
180:8 181:9 182:1 183:17 183:18,19 184:9,10,11 185:10,23 188:12 190:20 192:6 193:2,9 195:13,23 196:2
person's [2] 150:17,19
personal [1] 100:11
perspective [1] 172:5
phone [1] 16:16
phonetic [2] 3:2 159:3 physical ${ }_{[6]} 28: 8$ 45:25 47:5,8,9 71:21
pick [2] 99:16 113:2
picked [3] 127:25 140:17 171:2
picking ${ }_{[2]} 72: 5$ 195:6 piece [15] 50:17 54:23
56:16,20 66:9 71:20 72:8 79:7 94:8,20 101:7 113:1 113:7 128:7 196:11
pieces [6] 26:22 28:1 53:21 137:5 146:2 193:5 place [7] 57:3 63:17 70:5 98:22 102:17 103:24 119:3
places [1] 82:2
plan [3] 26:10,10 46:10
plate [4] $12: 14,16,16,19$
play [1] 15:3
plot [4] 132:4 134:15
141:12 142:24
plots [1] 134:5
PLPD [2] 10:7,12
plus [15] 32:13 39:5 92:24
93:24 94:9,12 96:10 99:9
99:17,24,24 118:1 141:17
141:20 153:14
pluses [1] 114:7
pocket [1] 13:21
point [24] 36:15,24 39:16
65:14 111:3 117:17 133:5 133:15,25 134:7 137:24 138:13 139:2,4,11,16,25 140:2 167:14 175:23 183:9 190:7,14 191:15
points [35] 56:13 61:25
73:25 105:17 107:19 108:2 116:24 128:22 132:25 138:5 141:21 142:10 145:9 148:8,10

157:10,20 166:19 167:15 169:18,21,24 170:6 177:13,14 178:9,12 179:6 179:11 182:8 191:5,17 191:20 194:24,25
policies [4] 29:16 40:22
49:20 50:6
policy [7] 11:19,21 29:18
41:11 42:14,15 49:15
popular [1] 107:24
population [2] 161:25 162:2
portfolio [3] 45:10 81:12 96:7
portion [2] 41:6 60:11 position [1] 187:3
positive [2] 114:9 129:1
possibility [1] 14:22
possible [4] 7:21 36:16
56:13 144:13
possibly [2] 3:10 181:4
post [10] 103:20 118:10 119:24 130:2 134:24 164:14,15 181:19 184:16 184:24
post-2004 [12] 102:24
104:1 112:21 134:5 138:17 142:7 144:22 146:6,8 147:12,20,25
posted [1] 151:9
potential [8] 93:13 94:21
100:3 102:3 138:20
141:15 147:1 151:1
potentially [6] 102:6 138:2 146:17 153:16 167:17 183:6
PPV ${ }_{[1]} 31: 25$
Practice ${ }_{[1]}$ 150:16
practices [1] 168:4
practise [3] 2:25 22:16
22:16
pre [8] 103:20 118:10 147:20 164:14 165:13 172:15 184:16,23
pre-2004 [11] 103:25 119:24 134:12 138:15 141:3,6,14 142:19 144:21 146:5,10
pre-determined ${ }_{\text {[1] }}$ 165:7
predetermined [2] 158:14 169:6
predicate [1] 150:14 preference [2] 19:7 161:1
preferred [1] 125:23 preliminary [2] 5:13 27:7
premium [38] 10:3 29:15
29:16,20,24 30:3,10,16 30:25 31:4 37:15,17,20 37:25 38:7,10,17 39:8 39:17,22 42:6 43:9 44:8 45:6,7,12,20 46:2,18,22 56:25 57:4,14 58:8,10 58:11,25 59:25
premiums [4] 25:4 43:2 43:3 86:12
prepared [2] 22:11 25:9
preparing [1] 23:5
present [5] 5:23 18:21
18:22 122:15 182:2
presentation [5] 4:19
8:7 18:15 22:1 153:1
presentations [2] 4:21 8:6
presented ${ }_{[2]}$ 5:11 $185: 1$
presenter [1] 15:12
President [1] 20:9
pressure [1] 46:6
presume [1] 135:21
pretty [3] 41:25 134:10 162:17
previous [4] 10:14 75:6 75:17 79:10
previously [1] 144:24
pricing [1] 21:5
primary [1] 21:7
principle [1] 157:20
Principles [1] 119:13
private [3] 25:15,19 115:24
probability [1] 126:3
problem [3] 12:9 137:4 162:18
problems [1] 16:14
proceed [1] 4:12
proceedings [1] 2:23
process [62] 25:12 36:5
41:7,21 42:5,24 46:11
47:19 50:12 61:20 62:2
62:8,13 63:17 64:14 65:8
67:18 68:17 69:16 70:5
70:24 77:14 80:17 86:25
95:22 96:5 105:6,7,23
106:4,10,14,17,25 107:11
107:25 108:6,7 109:7
110:19 119:17 121:9
123:17 130:19 141:9
150:9,11 151:14 153:1,3
156:12 159:23 165:16,18
168:2,3,6,8,9 169:2,15 170:8
produce [2] 87:1 151:12 produced ${ }_{[1]}$ 151:6 produces [1] 67:16 producing [1] 179:22
product [4] 54:1 77:15
114:24 151:12
profession [1] 21:4
professionals [1] 40:14
profit [1] 6:4
project [4] 87:24 107:8
152:19 183:23
projected [9] 40:4 54:18 54:21 87:16 89:12,15,17 90:1,3
projecting [3] 42:8
83:16 88:24
projection [7] 52:8 53:7

83:6,13 89:3,6 90:5
promote [1] 21:16
proper [1] 168:20 properly [3] 5:12 13:3 137:17
property ${ }_{[17]} 22: 18$
27:24 55:13 66:16,20,22 69:11 70:13 87:12 104:21 117:8 174:5,20,23 175:9 175:11 187:13
proposal [2] 7:9,13
proposed [5] 9:14 10:11
13:17 58:15 59:18
pros [1] 122:6
prospective [2] 85:5
87:8
proved ${ }_{[1]} 11: 24$
provide [8] 14:12 32:25
47:18 62:17 68:19 72:9 151:19 180:17
provided [17] 5:25 21:19
25:4 26:2,7 27:5 32:10 32:18 46:10 61:21 151:16 151:24 154:18,25 180:21 194:13,14
provides [4] 50:18 52:1 56:12 151:13
providing [4] 3:3 26:3 41:13 82:6
province [8] 4:10 7:8
9:16,19 11:19 12:20 13:4 14:9
provincial [2] 15:8 40:4 provision [7] 20:15 34:2 34:5,17 36:10 81:7,16
provisions [1] 36:3
PUB [2] 151:6 156:1
public ${ }_{[9]} 1: 5$ 4:13 5:2
14:12,14,22,24 18:17 197:6
publicized ${ }_{[1]}$ 151:6
published [3] 4:9,13,15
pull ${ }_{[2]}$ 65:10 156:20
pulled [1] 92:15
pun [1] 190:11
purchase ${ }_{[9]}$ 44:25 45:2
45:4,5 47:6 86:10,14,15 86:16
purchased ${ }_{[2]}$ 43:7 86:8 purchases [3] 45:7 46:15 86:4
purchasing [3] 45:1,3 45:14
purposes [7] 21:25 23:5
35:1 85:23,25 133:19 145:3
push [2] 188:23 189:6
pushed [4] 70:19 71:4,6 71:18
pushing [3] 142:16,17 188:19
put [30] 6:10 13:20,21
17:11,23 27:22 42:22
46:24 47:24 51:3 55:9
59:24 70:11 72:2,6 74:20

90:13 93:17 95:18 111:1
111:7,7,8 118:16 120:15 121:2 123:25 146:1 153:20 162:25
putting [3] 14:23 99:2 137:5

-Q-

Q.C ${ }_{[202]}$ 2:6 5:19 6:17 7:22 18:19 19:2,11,12 19:25 20:5,12,19 21:20 22:5,19 23:2,11,17,22 24:3,9,18,22 27:6 28:10 28:16,22 30:1,9,15,21 31:6,11,16,20 32:5 33:4 33:9,15 34:8,19,25 35:12 35:21 37:2 38:1,15,22 39:2,10,18 40:1,17 41:1 43:14 44:17 47:13 51:8 55:17,22 58:6,14,24 59:5 59:9,16,23 60:4,10,15 61:6,16 67:20 68:2,9 74:3,14,24 80:9,16 82:8 82:13,19,23 83:21 84:8 84:12 95:8 104:10,19 105:1,8,15 106:12 109:13 109:18 110:4,13 120:17
121:1 122:21 123:5,9,15
128:2 130:7,14 131:9,15
131:20 132:15,20 135:12 135:20 136:10,16 139:6 139:14,19 140:1 142:23 143:3 144:25 149:11 150:7 152:3 153:11
154:11,20 155:10,17 157:25 163:25 170:18
172:2,10 173:14,21,25
174:4,12,17 175:8,12,20 176:9,13,21,25 177:17
177:21 178:2,6,21 179:2
179:10,24 180:10,20
181:3,12,21,25 182:7,12
182:21 183:4 185:14,21
186:11,19,24 187:8,12
187:17 188:11,22 189:3
189:7,13,17,22 190:4,12
190:18,24 191:4,9,14,18
191:25 192:7,13,21 193:6 193:12,16,22 194:3,8 196:8,20
quarter [2] 25:12 86:15
query [1] 18:24
questions [5] 21:21
68:20 129:7 155:11
185:13
quick [1] 98:18
quickly [2] 43:15 90:22 quite [6] 127:20,24
144:21,23 190:13 195:21

-R-

$\mathbf{R}_{[13]} 123: 23$ 124:7,9,15
124:18,19 125:2,5,6,8 125:10 134:22 140:7
radio [1] 12:1
raise [1] 27:3
raised [1] 139:16
random [6] 114:4,12

129:2,5 143:15 195:8 randomly ${ }_{[2]} 114: 8$ 134:6
randomness [7] 125:19
125:21 126:5,11,21
127:17 140:17
range [2] 93:17 120:19
ranked [1] 13:24
rarely [1] 12:2
rate [40] 4:6 6:1 7:9,15
9:14,20 10:1,2 13:17,21
22:18 29:4 41:9,11 42:7
43:20,21 44:7,10 46:8
46:12,13,17,23 47:1
49:22 50:23 51:19 57:7
57:17,19 58:19 59:1,2
59:13,17,19 154:17
193:23 194:2
rates [14] 1:8 9:14 10:16
13:10 14:1 15:6 44:13
44:15 57:8 59:14 156:14
159:5 186:3 197:5
rather [3] 51:1 63:9 161:21
ratio [58] 37:3,5,7,15,15
37:18,23 38:12,14 40:4
54:21 57:10,15,20 58:23
62:4,5,6,15,21,22,24,25
63:1,2,5,8,10,12,13,17
64:4,6,6,9,15,20 68:16
68:19,21 69:10,12,16
70:1,10,18,23,24,25 71:2
71:18,24,25 72:9 75:9
75:23 80:6 90:5
rationale [2] $25: 16$
178:14
ratios [8] 25:22 57:1 63:19 75:4 76:5,6 80:8 82:4
re [1] 197:4
re-sampling [2] 188:5 193:4
reaches [1] 39:16
read [1] 167:7
reading [2] 30:2 179:21
ready [1] 18:20
realize [3] 11:5 13:22 14:24
really [40] $36: 2$ 48:10
49:23 51:15 56:18 62:23 71:19 81:19 94:18 99:13 105:20 106:17 107:18 111:8 125:4,18,20 126:5 126:11,17,21,23 127:14 130:20 137:8 141:7 142:3 146:13 148:8 153:4,24
161:17,17 165:11 169:13
170:15 171:12 172:1
173:11 184:23
reason [11] 36:15 51:23
55:7 65:10 70:20 134:12 140:21,23 142:22 144:20 146:21
reasonable [5] 7:17
161:23 175:3 176:4 186:2
reasonably [1] 46:7
receive [1] 59:12
received [3] 4:6,16,18 recent ${ }_{[11]} 54: 12$ 78:18
94:4 116:17 135:10 153:6 156:19 157:1,3 164:24 191:10
RECESS $_{[1]} 82: 17$ recognize [3] 43:2 45:19 53:3
recognized ${ }_{[1]} 34: 21$
recognizes [1] 98:2
recommend [1] 159:16
recommended [1] 122:10
reconciling [1] 27:2
record [2] 5:11 18:18 recorded ${ }_{[29]} 25: 3,4$
31:21 32:2,6,8 34:16 36:20 38:23 39:13 65:9 65:11 66:6,10 72:22 73:5 73:7,10,20 74:9 75:13 78:11 79:1,15 80:23 81:5 82:5 83:9 92:25
recover [2] 37:21 95:3
recovery [1] 6:6
red ${ }_{[7]}$ 99:4 118:22
131:25 132:5,6 143:11 145:8
reduce [3] 102:15 161:25 163:3
reduced ${ }_{[6]}$ 63:9 102:9
139:18 144:12 182:25 183:7
reduces [1] 139:2
reducing [2] 14:11 166:19
reduction [1] 178:15
refer [11] 27:25 33:21 49:9 63:19 75:3 81:6 90:12 122:9 126:13 133:3 174:20
reference [4] 3:22 61:9
72:19 166:8
referenced ${ }_{[1]}$ 151:7
referred [6] 27:21 43:12
76:22 87:15 106:25 116:21
referring [4] 61:5 175:7 185:24 186:25
refers [2] 29:12 150:17
reflect $[19]$ 33:6,19 43:19
44:9 45:12 48:6 53:6,13
54:4,5 93:6 99:1,24
117:7,18,18 129:16 156:14,25
reflected [4] 73:3 134:8 134:9 145:24
reflecting [3] 43:24 129:14 171:23
reflective [4] 31:2 84:24 99:25 101:1
reflects [14] 29:16 32:8 32:12 40:7 51:11 69:3 69:22 73:9,14 80:5 87:10 94:7 157:2 185:10
reform [28] 50:23 52:5

53:17 54:1,14 101:9,19 101:20 102:20,24 103:21
114:24 116:22 117:6,14
117:16 121:4 130:2 134:2 165:10 181:20,22 182:16 184:6,8,18 185:4,16
reforms [8] 50:15 51:5 52:2,3 116:23 117:2,10 131:3
regard [2] 7:11 19:18 Regardless [1] 102:12 regards [1] 188:21 registration [1] 12:4 regressed [2] 113:14,20 regression [47] 97:6 106:4,13,17,24 107:10 107:15,25 108:8,23
113:23 114:22 115:13,18
116:5 118:23 119:7,11
119:15 120:12,14,20
121:12 124:11 125:13
127:25 128:13 130:19
144:10 147:4,8 158:18
159:5,9,23 160:1 168:23
172:9 179:15 181:4,14
193:8,17 194:10,18
195:15,18
regressions [6] 119:10
166:1,2 168:14 193:5 195:11
regulator [1] 165:12
regulatory [7] 1:23,25
3:12 116:15,20 117:23 118:1
reject [4] 126:22 140:15 163:23 194:17
rejected ${ }_{[4]} 129: 9,25$ 148:24 176:18
relate [5] 76:11,13 90:22 173:12 192:15
related ${ }_{[5]}$ 21:24 53:25 54:1 61:20 125:25
relates [2] 90:25 173:11
relation [5] 37:17 71:23
72:24,25 107:5
relationship ${ }_{\text {[26] }} 51: 16$
105:25 106:3,6,7,8,19
106:23 107:4,7 108:17
108:19,22 109:1 119:20
119:22 125:20,22 126:6
126:10,12,16,23 127:18
137:3,19
relative [5] 88:15 93:21
142:18 152:14 166:25
relatively [1] 135:4 relevant [1] 153:24
reliability [1] 157:14
reliable [1] 26:18
relied [2] 23:8 62:2
relies [1] 109:7
rely [6] 97:15 105:20 109:1 151:25 153:10 188:6
remain [1] 59:14 remaining [1] 5:1 remark [1] 6:18
remarks [3] 4:1 17:8 83:23
remember [1] 110:12
removal [1] 166:22
remove $_{[12]} 12: 14$ 16:7
48:14,19 49:24 133:11
133:12 139:12 142:2
167:6 169:25 170:3
removed [4] 16:8 133:14 140:22 179:19
removing [5] 16:13 102:13 142:1 166:19 169:22
renew [1] 46:15
renewal ${ }_{[1]} 10: 2$
reorganize [1] 21:10
repair [1] 10:20
repeated [1] 57:13
replace [5] 48:15,22,23 49:24 50:8
replicate [5] 117:22,24
119:17 145:14 165:12
replicated ${ }_{[1]} 182: 19$
report [30] 5:25 22:1,21
22:24 23:5 24:11,12
151:13,24 153:3,17
154:17,25 155:15,21
156:6,11 159:6 160:4
170:19 172:19 173:10
174:18,21 175:22 176:16 185:2 186:12,17,20
reported [9] 34:12 36:11
72:22 76:25 79:12 81:8 81:9,18 93:22
reporting [1] 63:24
represent [2] 15:17 143:8
represented ${ }_{[2]}$ 29:25 145:10
representing [2] 9:10 142:3
represents [2] 98:24 99:22
request [2] 62:19 155:22
requested ${ }_{[4]}$ 10:6 58:16 154:24 155:15
requests [2] 4:18 154:19
required [1] 11:16
requirement [1] 13:19
requirements ${ }_{[1]}$ 129:25
reserve ${ }_{[1]} 36: 14$ reserves [12] 32:10,13 32:25 34:6 36:3,23 39:6 72:23 74:12 95:13 96:10 99:21
residual [23] 109:7 113:17,21,24 114:1,12 118:24 119:1 128:19 129:4 132:4 134:5,8,15 136:3 141:12 143:12
158:7,8,10,10,13 170:10
residuals [22] 109:4,10 114:3,9,16,17 125:14,19 128:18,23 129:2 133:3

134:9,24 138:8 140:18
141:21 142:24 143:15 144:4 158:20 195:9
resolution [2] 36:22 96:3 resolve [2] 37:1 93:9
resolved [2] 94:6 95:2 resource [1] 168:17 respect ${ }_{[17]} 21: 21$ 24:25 25:9 33:12 63:3 84:4 88:1 92:19 93:25 94:25 115:11 151:5 153:10 154:1 171:7 174:22 184:18
response [3] 62:18 177:2 186:13
responses [2] 155:12,12
responsibility [11]
12:14,17,18,23 21:8 150:20,21,23 151:10,18 152:2
responsible [3] 20:11 20:15,17
rest [1] 161:23
result [23] 7:6 69:5,21 81:18 106:10 109:5,6 110:19 118:8,15 127:3 127:16 130:18 133:10 138:23,25 143:9,10 146:2 147:11 169:25 193:8,17
results [41] 25:2,14,17 25:21 26:12,23 49:5 62:16 63:24 64:1,8 65:19 66:12,13,19 68:16,18 69:2,15 75:9 76:14,23 84:23 104:8 107:2 108:7
111:3 117:24 122:16 133:24 138:6,10,21 147:10 148:22 167:20 168:15 179:22 180:5,16 194:11
retire [1] 10:5
return [1] 16:16
reveal [3] 39:3 40:19 192:11
revealing [1] 130:16 reveals [1] 192:8
review [12] 7:20 50:24
118:1 121:16,24 152:1
152:14 164:2 165:12
171:11 177:6 180:13
revised [1] 155:21
RFI ${ }_{[1]}$ 155:3
right [32] 1:11 3:14,14 3:24 17:1 22:6,20 23:3 27:7 35:22 41:2 43:15 47:14 55:18 58:13 60:1 60:16 80:17 82:9 90:19 105:11 110:3,8 118:19 135:21 138:13 141:17 147:5,19 154:12 177:7 196:19
rise [1] $42: 10$
risk [3] 14:5,24 144:12
road ${ }_{[5]}^{12: 22} 13: 22$ 14:23 19:24 197:7
Robert ${ }_{[1]}$ 1:24
room [11] 15:25 108:16 160:14,23 161:9,12,22 162:11,14,23 188:10
rooms [4] 162:6,7,9,15 row [5] 72:21 73:3 76:22 77:14 112:5
rows [1] 27:14
run [5] 60:25 105:6 128:18,24 179:14
runs [3] 129:4 134:8 136:3
Ryan [1] 1:23
-S-
salvage ${ }_{[1]} 95: 4$
sample [15] 161:2,3,8,12
162:1,3,20 163:2,3,14
164:4 166:20 178:16 188:6 195:14
samples [1] 160:25
satisfied [6] 128:11
145:21,21 147:9,9,11
satisfy [2] 129:25 144:11
Saw [9] 70:15 82:3 85:2
114:14 129:13 171:23
172:11 175:16 183:7
Says [16] 13:24 31:25
69:20 88:10 113:11,14 119:8,25 125:17 140:16 141:17 174:24 175:24 185:25 187:7 195:21
scalar [3] 112:13,19 120:10
scalars [2] 112:1 120:3
scale [3] 124:23 141:16 141:18
scapegoat [1] 13:4
scattered [1] 134:6
science [2] 20:24 21:24
sciences [1] 127:21
screen [3] 23:16 30:6 187:2
scroll [15] 89:22 91:17 92:9,12 94:22 98:17 110:11,11 112:15 113:6 136:14 137:23 138:9 150:1 158:24
season [3] 111:5,6 120:2
seasonality [33] 106:1 106:22 112:10, 11 116:7 116:9 120:8,9 121:5,21 124:6 129:8,10,12 170:21 170:22 171:1,3,6,14,21 171:24 172:4,20 173:22 175:4,6,14,16 176:6,17 176:18 177:3
seat [1] 8:18
second [33] 13:21 15:11
15:22 29:22 54:16 62:13 72:25 73:23 75:8 80:22 86:18 91:24 101:4 108:6 108:20 110:23 111:11 112:18 113:14 137:14,15 169:18 174:23 175:1,24 176:2 180:19 181:7,16 181:19 186:6 192:1

195:21
Secretary [1] 1:21
section [27] 22:17,20
23:6 24:8,14,17 61:10
65:5,8,12,15 66:3,6,7,17
67:8 68:15,21 70:15
72:12 73:18 80:1,2 84:22
86:18 87:15 150:16
See [113] 27:14,20,24 31:1
33:18 42:7,23 44:3 45:6
45:17 53:14 55:1,5,11
55:13 57:20 66:18 67:4 67:9,12,12 68:24,25 69:8 69:19 71:7 72:7,19 73:4 75:2,7 76:8,10 77:17 79:21 80:3,25 81:3,19 81:21 84:17 85:11,16,21 86:4,5 87:6,12,14 88:9 89:16 90:14,16 91:1,4 91:20,22 92:13 94:16 99:3,3,7,9,18 100:2,6,24 102:19 103:25 106:22 108:8 110:19 111:2 112:15 113:20 114:7 117:18 120:3,7,22 121:20 121:21 123:24 124:17 127:2 128:24 130:22,24 131:7 132:24 134:5 138:12 139:13 141:2,14 143:9 145:13 146:4 149:6 149:19 150:3 157:22 158:22 163:18 170:5 171:24 180:18 181:2 182:2,15 183:8 187:2,9
seeing [18] 44:4 49:5
55:10 74:23 85:19 86:20
91:3 98:1 100:25 109:5
119:16 124:2,3 140:9
143:18 144:4 193:24 195:17
seeking [2] 58:20 126:17
seem [5] 11:12 15:3
141:22 159:7 173:8
segment [1] 25:19
seize [1] 13:1
select [3] 69:21 76:5 126:8
selected [29] 64:8 65:7
69:19,23 70:13,16 76:17 91:2 99:6 113:16 114:20 115:12,18 118:20,22 120:4 122:4,8 127:4,12 145:10,11,12 149:8 152:11 154:17 156:25 171:9 173:4
selecting [1] 122:19
selection [18] 65:16,17
65:22 66:5 69:20,25
70:10,22 71:16 73:19 76:22 80:7 99:15 124:1 142:13 173:12,13 193:1
selections [8] 62:21
64:13,17 76:9,20 97:14 122:2 171:15
selects [1] 64:23
sell [2] 12:12 78:12
senior [2] 20:9 122:13
senior's [1] 1:13

Sense [3] 96:15 144:19 144:20
sensitive [3] 169:20,23 169:25
sensitivity [1] 170:5
sentence [2] 157:8 187:1
separate [6] 53:2 104:20 104:21 115:19 154:9 184:11
separately [3] 51:25 137:2 146:22
service [4] 11:6,23 14:12 95:21
services [8] 1:21,25 20:10,16,17 21:9,13,17
servicing [9] 26:2,8
32:11,18 34:12,13 36:4 40:11 154:2
set [3] 25:11 44:2 157:17
sets [7] 27:16 87:17 92:1 92:20 115:22 160:10 162:15
settle [4] 10:25 53:10 78:4,13
settled [4] 32:23 34:1 93:4,10
settlement [3] 62:1 94:20 102:3
settling [2] 10:18 32:19
seven [1] 16:7
several [2] 25:1 109:22
severity [47] 45:23 53:8 53:16,19,24 87:2,3 97:4 97:11,15,19 98:2 99:19 100:22 102:4,12,13 103:22 105:9,12 106:20 109:23 130:6,8 136:13 136:23 137:1,4,14,20 140:9,11 142:16,21,24 145:2,11, 16, 18,22 146:9 146:11,22 147:1,4 148:25 192:18
share [2] 25:17,22
sharing [1] 25:21
Shawn [3] 2:11 19:10,23
sheet [1] 113:13
shift [5] 52:4 53:24 112:20,22 115:1
shifted [1] 113:4
shifts [1] 50:15
shock [1] 9:24
shoe [4] 108:15,18 124:13 124:16
short [1] 161:17 shorter [2] 49:21 187:23 shortly [1] 3:23 shots [1] 160:6 show [13] 72:12 73:7 78:24 79:23 84:16 85:18 86:25 102:18 113:5 118:13 130:10 132:1 145:13
showed [1] 109:24
showing [6] 43:16 114:12 121:4 123:10

134:2 147:12
shown [2] 38:18 121:7
shows [1] 115:6
sic [1] 177:14
side [14] 42:25 45:16,16 45:18,21 46:5 47:15
52:22 53:16 71:21 103:22 128:10 130:6 138:1
sides [1] 46:7
signature ${ }_{[1]} 22: 22$
significant ${ }_{[15]}$ 2:14
5:21 60:11 84:1,11 103:9
104:13 106:9 127:5
133:10 138:18 146:7
171:4 178:16 195:20
significantly [6] 49:4 133:4 134:13,13,14 138:8
similar [4] 46:20 49:8 94:24 147:23
similarly [5] 53:7 57:11 68:3 75:15 87:12
simple [1] 97:20
simplify [1] 77:14
simply [14] 30:25 37:9
66:19 74:4 75:4 89:11
89:23 98:10 107:10,15
109:2 110:21 111:12 194:19
single [8] 49:11,19 77:24
135:14,15,25 139:15 140:2
sit [1] 196:1
sitting [5] 2:10 3:16 5:4 5:6,8
six [9] 29:9 73:8 74:5
92:18 124:12 148:8
165:22 169:11 192:5
size ${ }_{[15]}$ 48:18 98:6
108:15,18 124:13,16
126:4 161:25 162:3,19
163:3,3,14 166:20 178:16
slide [18] 68:23 69:17,23
71:7 76:7 79:8,10 86:19
91:3 99:17 101:4 115:16
119:5 140:5 141:1 145:19 145:20,24
slight [2] 141:3,4
slightly [2] 86:7 192:3
slope [10] 112:24,25
129:17,20 139:1 147:22
148:20,21 171:21 183:20
slopes [2] 50:13 147:23
sloping [2] 130:23 134:20
small [5] 48:7 81:24 114:17 143:15 163:10
smaller [5] 134:24
161:12 162:2 163:5 188:6
snap [1] 160:6
snapshots [2] 72:15 74:8
social [1] 127:21
Society ${ }_{[2]} 2: 18$ 21:2
soft-tissue [1] 10:21
solemn [2] 19:6,9
solicitor [1] 3:22
someone [3] 12:3,13,24 sometimes [7] 76:15,16 88:18,19 127:23 170:23 171:7
somewhat [1] 3:18
soon [1] 3:10
sorry [31] 6:21 20:13,15
23:10,18 30:2,5,6 34:9
34:11 72:24 75:16,21
79:10,23 80:2 90:19
98:25 101:18 110:12
119:6 131:14 139:7
154:21,24 155:9,18
177:20 181:7 190:9
196:19
sort [7] 60:25 96:12 107:4
109:19 135:22 137:19
185:18
sound [1] 197:9
sounds [1] 188:5
source [2] 14:13 29:15
sources [1] 25:1
span [1] 49:1
speak [9] 15:23 19:18
20:20 23:4,7 33:6 34:20 47:15 59:20
speaker [1] 16:22
speaking [2] 1:19 164:5
speaks [1] 150:18
specific [2] 83:2 165:19
specifically [4] 26:11
67:5 153:4 164:5
specified ${ }_{[1]} 86: 16$
spend ${ }_{[1]}$ 133:21
split [12] 25:16 27:16
66:15 72:4 85:16 91:16
116:12,18,25 118:6 137:15 172:14
spoke [3] 44:18 181:22
182:22
spoken [1] 60:16
spokesperson [1] 9:12
spread [2] 71:22 99:14
spreads [1] 49:25
squared [14] 123:23
124:7,9,15,18,20 125:3
125:5,6,8,10 134:16,22 140:7
squares [6] 106:25
107:23 109:7,9 159:24 194:22
squaring [2] 107:18 109:8
St [4] 9:6,11 197:7,10
stability [1] 157:14
Stamp [212] 2:6,8,10
3:21 5:17,19 6:17 7:22
18:13,19,24 19:2,11,12
19:25 20:5,12,19 21:20
22:5,19 23:2,11,15,17
23:22 24:3,8,9,18,22
27:6 28:10,16,22 30:1,9
30:15,21 31:6,11,16,20
32:5 33:4,9,15 34:8,19
34:25 35:12,21 37:2 38:1

38:15,22 39:2,10,18 40:1
40:17 41:1 43:14 44:17
47:13 51:8 55:17,22 58:6
58:14,24 59:5,9,16,23
60:4,10,15 61:6,16 67:20
68:2,9 74:3,14,24 80:9
80:16 82:8,13,19,23
83:21 84:8,12 95:8
104:10,19 105:1,8,15
106:12 109:13,18 110:4
110:13 120:17 121:1
122:21 123:5,9,15 128:2
130:7,14 131:9,15,20
132:15,20 135:12,20
136:10,16 139:6,14,19
140:1 142:23 143:3
144:25 149:11 150:7
152:3 153:11 154:11,20
155:10,17 157:25 163:25 170:18 172:2,10 173:14
173:21,25 174:4,12,17
175:8,12,20 176:9,13,21
176:25 177:17,21 178:2
178:6,21 179:2,10,24
180:10,20 181:3,12,21
181:25 182:7,12,21 183:4
185:14,21 186:11,19,24
187:8,12,17 188:11,16
188:20,22 189:3,7,13,17
189:22 190:4,12,18,24
191:4,9,14,18,25 192:7
192:13,21 193:6,12,16
193:22 194:3,8 196:8,20
stand [4] 11:22,24 17:16 18:21
standard ${ }^{[7]}$ 104:8
115:23 116:10,22 117:21 165:9,11
standardized [1] 67:1
standards [4] 22:15,16 121:13 150:16
standing [1] 21:1
standpoint [3] 105:24
141:9 168:17
Star [3] 4:19 15:14,17
start [19] 21:8 22:7 28:24
41:17 101:6 104:3 118:14
121:13,14 127:1 141:24
148:11 166:5,10 170:1
170:21 172:25 178:9 186:23
started [4] 21:4 148:14
181:16,19
starting [4] 3:18 4:10
157:9 166:14
starts [5] 68:14 90:20
100:8 157:6 169:19
statement [2] 5:21 7:18
statements [2] 4:22 7:23
statistic [3] 125:2,25 129:3
statistical [9] 26:5,9 157:11,21 158:15 163:19 163:22 166:6 195:10
statistically [9] 106:9
108:9,19,21 117:19 127:5 168:24 171:4 195:20
statistics [7] 108:23
119:7 120:13 123:22

152:7 158:19 195:18
Stats [1] 13:23
stay [2] 92:8 163:7
steeper [1] 195:22
step [4] 104:7 108:6,6 165:17
still [11] 9:9,10 14:4 57:18 100:25 102:6,7 137:10 189:12,14 195:25
Stop [1] 74:1
storm [4] 49:16 50:2,3,3
straight ${ }_{[7]} 108: 12$
109:21,22 135:13,15 141:2 167:8
strategy [3] 178:23 179:3
179:13
strength [1] 159:23
stress [1] 13:25
strictly [3] 6:2,8 164:20
strike [1] 179:16
structure ${ }_{[15]} 26: 16$
27:13 50:18,25 51:2,15
97:8 110:18 111:6 112:9
115:15 136:21 152:15
154:1,3
structures [1] 126:25
stuff ${ }_{[7]} 86: 12$ 118:18
134:15,22 144:9,11 170:15
sub-coverages [1] 85:12
subject [1] 13:7
submit [1] 5:3
subrogation [1] 95:4
subscribe [1] 159:12
subsections [1] 163:6
subsequent [1] 50:22
subset [8] 86:17 159:17
159:19 164:4 165:20,23 165:25 191:6
substantially [2] 53:13 178:18
such [4] 11:23 13:2 107:6 151:18
sudden [1] 115:7
suffering [10] 101:12,17
101:17,18,22 102:4,7,14 183:3,5
sufficient ${ }_{[2]} 26: 19$ 82:6
suggest [4] 158:13 180:6 195:12,18
suggested [1] 175:16
suggesting [1] 123:25
suggestion [1] 176:5
suggests [1] 195:5
sum [7] 28:12 30:16
64:11 66:19 79:20 86:2 92:24
summarize [3] 55:19
63:25 64:17
summary [3] 62:17
68:16 72:7
Sunday [1] 9:4
superimpose [1] 114:21
superior [1] 160:1
support [6] 3:12 84:19
109:16 145:9 163:19,22
supporting [1] 169:21
supports [1] 91:18
supposed [3] 12:12
117:7 188:16
surprised [1] 160:17
swearing [1] 19:5
switching [1] 128:23
sworn [2] 4:24 18:25
system [2] 32:12 93:4
$\frac{\text {-T- }}{\text { T- }}$
$\mathbf{T}_{\text {[1] 125:25 }}$
T-statistic [1] 125:24
table [5] 39:19 90:16 119:6,8 125:12
takes [3] 56:16,21 89:10
taking [12] 74:4 77:19
83:13 111:15 120:21,21 150:19,20 161:8 163:10 168:11 188:1
talks [1] 16:12
tall [2] 161:17 188:10
taxi [34] 1:8 4:7,19,20 7:7
9:6,9,13,15 11:3,12,18
12:7 13:6,24 15:14,17
17:16 25:2 29:8,10 30:10
30:13 31:3 32:3 38:8,11
40:7 65:3,4,13 86:3
92:18 197:4
taxies [4] 57:5 61:21 66:14 67:6
taxis [19] 22:12 26:1 29:6 29:12 31:13,13 44:13,24 45:10 46:1,9,12,15 71:13 84:25 85:15 86:7,8,22
technical ${ }_{[2]} 3: 5$ 121:24
Technician [1] 3:13
telling [2] 39:20 117:13
tells [3] 126:2 183:25 194:21
template ${ }_{[2]} 67: 1,2$
ten [11] 42:20 100:14
152:15,16,18 156:21
165:19 169:6,10 185:10 187:25
ten-year [18] 163:13 165:22 169:4 173:7 177:12,22 179:4 180:13 185:4 186:1 187:5,22 190:25 191:13 192:2 195:14,17,25
tend [1] 116:18
tended [1] 36:25
tens [1] 12:5
tenure [1] 21:6
term [1] 113:3
terms [8] 20:21 41:8 42:23 54:9 137:12 161:3 168:8 192:15
terrible [1] 190:10
test [14] 128:18,24 129:3

133:7 140:16 149:5
157:18 158:22 163:18 170:3,22 185:18 188:12 195:5
tested ${ }_{[11]} 129: 9,24$
138:23 148:18 153:23
157:22 172:11,13,13 173:18 185:15
testing [4] 158:2,3,6 178:14
tests [2] 147:13,14
thank [15] 4:3 5:20 7:21
8:23 15:9,11 18:9,11,14
18:14,20 22:6 82:24 196:19,21
themselves [15] 2:3 33:3 46:14 47:11 54:11 58:1 89:21 93:9 114:16 125:19 134:11 140:18 144:11 194:14 195:9
then-H1 [1] 149:21
thereby [1] 14:11
therefore ${ }_{[4]} 12: 17,18$ 93:11 160:8
they've [14] 32:23 144:11
152:9,10,11 164:25 166:5
177:11,12,15 178:23 179:14 180:6,7
thinking [1] 106:15
third [20] 9:21 44:3,6 47:2,7,10 54:24 60:6,12 63:8,21 70:8,19 71:1 85:13,17 86:5 113:16 156:13 157:9
Third-Party [1] 27:21
thought ${ }_{[4]}$ 11:13 137:13 184:15 195:16
thoughts [1] 156:9
thousand [3] 12:6 81:25 133:25
thousands [2] 95:10,12 three [16] 16:7 18:3,5 47:22 51:15 61:14 62:3 64:1,24 92:20 97:7 124:22,25 132:24 148:6 148:7
through [74] 5:24 26:2,9
26:15 28:19,23 29:6 32:11 34:14,22 41:7,16 41:20 42:5,16,24,25 43:1 43:1,11,13 44:24 46:10 47:18 60:25 65:8 66:14 70:7 83:1 88:3 92:21 93:3 96:6,18 97:8 104:2 104:7 105:6 106:4 107:2 107:14,19,23,25 108:1 109:22,23,24 110:8,9 111:19 112:5 113:7 115:21 121:10 124:15 125:15 126:5,12 128:6 130:23 134:4 138:7 146:23 147:15 150:22 151:4,21 153:2 156:5 168:23 171:15 179:21 180:6
throughout ${ }_{[4]} 4: 10$ 37:8 118:20 159:6
throw [2] 122:4 124:11
times [4] 50:14 98:10 117:4 171:20
title [3] 20:9 63:23 68:14 titles [1] 112:6
today [3] 3:18 19:14 86:1
today's [1] 4:14
Todd [3] 4:19 15:14,16
together [15] 28:4 46:24
64:13 69:13 79:20 89:1
97:17 120:15 122:6 124:1
137:5 146:2 163:1,12
173:3
Tom [2] 2:23,24
tomorrow [7] 3:20 5:5 5:7 189:16 190:2 196:11 196:14
too [8] 17:11 57:22 64:7 74:25 114:13,13 146:1 170:23
took [5] 56:4 57:3 154:14 160:21 162:14
top [20] 10:13 13:25 27:17 28:11 30:7 40:2,2 55:2 65:5 76:8 77:21 84:23 118:18 119:10 132:16 136:20 178:12 187:1,1 190:19
topics [1] 21:25
Torbay [1] 197:7
Toronto [1] 20:25
tort [1] 182:16
total ${ }_{[22]}$ 10:14 12:5
27:17 28:17 30:7 33:19
35:5,16 36:20 43:23 44:1
59:22 71:9,15 80:22,23
81:1,3,19 100:1 149:24
162:16
totally [1] 11:9
totals [1] 74:9
touch [2] 132:3 160:4
touched ${ }_{[1]}$ 83:1
touches [1] 104:15
TPL ${ }_{[7]} 66: 18,23,24$ 67:8 67:13,22 69:14
trace [1] 91:8
track [1] 79:6
train [1] 11:13
training [2] 20:21 21:22
transactions [1] 32:9
transcribed [1] 197:8
transcript [2] 5:7 197:3
transcripts [1] 3:8
translate [1] 164:2
translated [1] 149:16
transportation [1] 14:14
Treasurer [1] 9:6
treat [2] 43:11 51:25
trend [88] 45:6,8,18
50:11,12,18,21,25 51:2
51:14,19 53:22,23 56:15
56:20 86:24 87:11 92:11
95:23 96:18 97:4 100:17
103:4,11,11 107:14 108:5

108:5 112:19,21 113:1,2
113:3,8 115:10 120:11
121:10 122:10,16 124:24
126:24 130:5 131:11
132:7 135:23,24 139:2,5
139:16,18 141:5 142:6
148:2 149:13 152:10
153:2 154:4,17 156:14
156:15 157:7 159:10,13
163:16,24 164:9,15,18
166:16,16 168:7 171:11
171:22 182:16 184:16,22
184:24 185:7 186:3 187:3 187:21 190:10,13 192:12 192:20 193:21,23 194:1
trended [4] 56:1,15,16 56:24
trending [1] 145:2
trends [15] 50:13 95:25
101:2 117:4 147:19 149:7
151:5,14,25 156:25
157:18 165:15 169:9,14 177:7
triangle [8] 73:13 74:19 74:19 75:6 78:18 79:9,9 80:12
triangles [1] 72:13
trouble [1] 124:7
true [4] 81:7 127:14
176:22 197:2
truly [1] 81:17
try [18] 79:23 102:18 103:16 104:4 109:19 110:5 113:4 117:24 118:2 119:1 137:10,16,17 146:14 147:5 159:9 164:22 183:16
trying [45] 23:15 34:21
41:8,9 42:6 51:11 53:2
56:19 61:12 80:14 85:6
85:25 87:22 105:18,20 106:18 107:1,18 108:1 109:8,10,21 117:21 119:18 122:23 124:9 125:13 128:3,4,15 131:16 133:21 134:21 135:3
160:1 161:6 162:1 163:8 164:9 165:11 166:2 176:14 180:18 187:24 192:24
turn [4] 3:24 22:7,8 27:9
TV [1] 12:2
twenty [1] 156:24
twice [1] 39:16
two [100] 1:11 4:18 8:10
8:12,14 10:17 13:13
25:14 36:2 39:3 41:16
47:15 51:11,25 53:2,21
54:13 55:18 69:13 74:20
78:24 79:17,19 81:11,13
87:17 89:1 91:5,14,16
92:1,4 97:17 100:2,5,25
101:8 102:23 103:11
106:3 108:10,13,14,22
115:19,21 116:13 118:10
118:21,24 119:14,24
124:5 130:21 131:5
132:13 133:25 137:5,12
137:16 145:22 146:2,3

148:17 149:22,23 150:5 150:6 153:14 159:21 160:9,11,25 162:14 164:14 167:15,24 169:20 169:24 170:6 177:15,15 178:10,10 179:12,12 181:9 183:19 184:9,10 184:12 188:9,13 191:17 192:1,5 194:23,23 195:23 196:2
two-fold [1] 114:3
two-thirds [1] 72:2
type [4] 49:14 92:17 147:5,7
types [7] 3:6 49:10 50:10 56:11 117:10 143:24 185:13
typically [14] 63:25 97:7 97:12 100:7 116:14,16 117:25 123:21 129:16,20 129:22 136:25 137:7 148:11
typo [1] 32:3

-U-

UA [1] 30:7
ULAE [2] 95:18 159:3
ultimate [42] 35:4,22
37:4,24 38:2 40:19 47:20
56:1,15,24 62:1,11 64:15
64:24 65:6,17,18,21,23
66:5,11 70:13,15,16
77:12,18 78:8,19 79:25
80:7,25 81:2,6 92:23
93:2 94:1 96:3,8 98:11 99:6 162:5 183:16
ultimately [11] 33:25
36:6 37:10 56:19 78:4
82:7 83:10 93:9 94:5,11 100:16
ultimates [5] 69:17,19
69:21 70:4 73:19
unbelievable [1] 11:9
uncertain [1] 96:16
uncertainty [4] 93:14 94:21 99:15 178:19
under [17] 1:7 28:5 42:13
50:24 66:23,24 67:13 70:16 75:10,11 80:3 84:15 85:11,12 86:17,18 98:1
underinsured [3] 71:10 71:12,14
underlying [21] 6:5,7 11:13 43:5 91:18 97:21 112:18 137:9 146:25 149:1,7 152:20 156:14 160:23 163:15 166:16 184:15 186:3 187:3 192:12 193:21
underneath [1] 112:6 understand [28] 18:17 19:17 39:19 44:12 60:21 61:12 76:18 120:14 152:14 153:5 165:18 166:23 167:5 176:14 177:11 178:13 180:4

181:8 182:11 183:11,12
184:4,18,22 187:20 193:7 194:7 195:15
undone [1] 189:14 unfavourable [7] 93:15 94:13,15,17 96:14,21 99:5
unfortunate [1] 32:3 unfortunately [5] 9:8 46:9 62:15 68:18 132:8
uninsured [9] 9:23
10:10 11:14 12:10 28:7
71:9,12 86:9,10
University [1] 20:25
unknown [3] 34:20 81:10,15
unless [3] 6:18 99:14 195:16
Unlimited [1] 3:9
unobservable [1] 144:3
unpaid ${ }_{[1]} 96: 13$
unresolved [1] 94:8
up [110] 10:23 13:19 15:3
17:9 23:15 30:5,24 36:16 43:16 45:24 47:11 51:22
51:24 52:4 53:12,12 55:6 56:20 58:11 63:18 64:11 64:17 65:11 71:7 77:8
78:24 79:4,8 80:2 81:23
92:4,9,12 93:1 94:22
96:8 101:4 108:11 110:11
110:12 112:2 113:6 114:6 116:25 118:6 119:5,15
120:12 122:3,9,13,18,19 125:16 127:25 128:9,10
129:6 130:1,19 132:3,17
132:19 134:23 137:15,21
140:5 141:23,25 144:15
145:7 148:4 149:13,23
154:16 159:18,19,24
160:2,11,15,16,25 161:2
161:13,15,19 162:12,16
162:25 163:1 166:1,2,11
167:10 168:11,25 172:14
174:19 177:9 179:16
180:7 184:1,12 186:7
188:3,6,21 190:14 194:20
updated [1] 25:12
upfront [2] 168:14 170:7
upper [2] 132:9 141:18
upward [3] 53:23 130:23 135:23
used [24] 23:5 25:1 26:13
37:8 47:25 51:6 54:20 62:10 63:5 69:5 71:2
87:19 92:11 112:12,14
114:22 127:20 135:11
162:19 165:18 167:21
173:6 185:4 193:3
useful [1] 103:19
users [1] 150:25
uses [1] 125:24
using [30] 49:22 52:16
54:11,12 64:15,19 69:6 69:12,16 85:22 89:2 111:14 117:24 124:21,22 124:23,23,24 125:2,5

133:24 144:17 150:18 156:18 160:1,3 164:12 185:5 193:2,3
usually [1] 165:9
Utilities [1] 197:6

valid ${ }_{[7]}$ 106:9 108:9,19
108:21,25 148:22 168:24
Valley [1] 19:24
valuation [15] 25:9,11
25:24 31:25 61:22 62:2
62:3 63:11,12 69:1,21
95:15 96:5,5 113:11
value ${ }_{[47]} 36: 16,1756: 6$
56:9 74:4 75:10,11 79:21
89:12 90:3,23 91:9,12
92:5 113:10, 15,18,19,20
114:15 124:18 125:11,24
126:2,18 127:6 129:10
134:16,22 139:13 140:13
149:20 158:11,12,13
166:3,9,9,25 167:1,4,10
172:22 183:7,24 185:11
195:19
values [26] 43:7 45:15
73:21 78:17 87:4,5 91:5 91:14 92:4 96:17 107:16 126:7,8,24,25 127:2
131:25 134:10 136:23,23 145:13 150:5 152:8 158:17 166:11,13
variability [1] 94:22 variable [2] 124:14 143:20
variance [7] 99:8 124:2
140:8 143:17 148:9 162:23 178:17
variation [3] 100:3 163:4 195:8
various [9] 10:12 21:7 27:19 46:24 65:1 120:3 122:7,14 123:22
veer [1] 127:23
vehicle [16] $11: 18,23$
12:13,15,20,22,24 13:1 13:2,22 26:16 38:6,8 43:7 92:14 98:16
vehicles [14] 14:11,18 46:13 86:24 87:23 88:25 91:25 92:6 95:14 97:23
97:24,25 103:8 130:3
version [2] 132:7,8
via [1] 4:12
Vice ${ }_{[1]} 20: 9$
Vice-Chairman ${ }_{[2]}$ 1:10,12
view [28] 6:2 25:14 26:18 48:4 52:16 54:14 59:13 73:14 93:13 95:6 96:3 98:21 100:8,11,13 102:14 116:19 125:3 151:4,15 151:19,23 153:18 158:7 159:12 166:6 169:22 187:24
views [4] 115:23 121:12 122:2 165:9

violently $[1] \quad 190: 3$
Vivian [1] 19:23
volatile [7] 13:6 103:6
134:14 144:22,23 160:8
$160: 24$

volatility [7] 103:7,10 140:11 142:5,12 146:7,8
Vulcan [1] 3:1
-W-
wait [1] 149:22
walk [2] 28:23 156:5
walkback [2] 147:17 148:5
wants [1] 103:16
washed ${ }_{[1]}$ 81:14
ways [5] 98:8,13 107:22
165:23 169:23
weight [11] 63:7 64:25
70:23 88:8,12,13 89:1
91:15 92:1 100:17 153:1
weighted ${ }^{[7]}$ 43:25 88:4 88:22 89:18 91:2,14 150:4
weighting [3] 62:23 64:5 66:19
weightings [1] 85:10
weights [4] 88:10,14
89:2 181:4
Wells [1] 1:9
Whalen [5] 1:14,17 2:9
17:25 18:4
wherever [1] 77:12
whims [1] 13:7
whole [15] 80:17 91:13
113:7 115:20 118:5
120:19 121:6 130:18
138:14 141:25 159:11
163:24 165:8 169:1 172:9
whopping [1] 10:9
wider [1] 162:24
William [1] 3:1
Williams [1] 2:24
window [1] 169:12
windows [1] 159:11
winter [1] 50:3
wish [1] 123:12
withdraw [1] 11:23
within [6] 9:11 28:2
160:6,10 187:23 191:12
without ${ }_{[6]} 11: 1$ 14:3
146:14 157:10 171:21 174:19
witnesses [3] 4:24,25
18:25
wonder [2] 16:19 102:16
words [1] 132:17
worked [1] 21:6
works [1] 169:23
workup [1] 95:20
world [4] 59:14 114:16 125:3 144:8

worry [4] 141:24 144:8
146:22 184:8
worse [1] 129:15
worst [1] 144:3
worthwhile [1] 119:4
worthy [1] 138:19
wrap [1] 190:14
written [1] 29:19
wrong [3] 1:17 127:9
184:3
Wran

Wyman [26] 2:2 7:12 62:19 84:2 125:23 150:10 151:12 154:13 155:24 164:2,19 165:19 167:21 173:6 174:18,21 175:15 175:23 176:15 182:15
183:8 184:19 185:15,25 186:12 190:21
Wyman's [9] 152:1 153:3,17 154:17,25 155:14 156:11 172:18 187:3
-Y-
year ${ }_{[134]} 7: 6$ 10:6,15
11:11,16 13:15,18 16:4 17:14 25:21 27:1 29:8
29:10,11,13,21,22,23
36:19 38:24 39:5,23
42:10,17 43:21 44:14 47:21 48:10,13,25 50:9 52:9,11,20 53:20 54:7,9 54:13 55:3,4,15,15 56:2 56:3 57:9,17,21 62:7 63:15,20 64:3,10,11,12 64:16,18 65:24 66:7 67:9 68:22,24,25 69:2,4,5,7,8 69:24 70:21 72:15 73:1 75:11,13,16,20,21 77:11 78:21 79:2,11 83:10 85:3 85:4,21 88:4,5,8,10,11 88:16,17,20,24 89:6,7 89:10,25 90:5,24 91:6 91:13 94:3,4 98:21
100:10,13,19 110:22
111:11,11,13,19 113:22
116:13,18 129:14,15
130:4 148:1,16 149:21
149:24 152:23 157:1
165:20 167:1 169:19
175:2 176:3 184:25
185:10 187:25 192:19
196:1
years [76] 9:7 10:17
13:10,13 14:3 18:3,5
21:3,6 27:15,16 28:19
32:15,20 35:11 42:9,20
44:9,10 48:11,12,19,21
48:23 50:8 51:22 54:12
54:13,19 56:13 57:1 63:4 63:6 81:2 91:17 92:16 100:14,16 111:13 112:12 112:12,16 115:20 116:6 116:11,12 120:2,10,21 124:23 129:12 134:1 135:9,10 148:6,7 152:15 152:17,18 153:7 156:21 156:24 157:3 164:11,12 164:24 169:6,6,9,10,15

172:14 186:5 187:14 191:10,12
yet [4] 34:16 40:21 117:8 127:25
Young [1] 2:12
yourself [2] 119:16 145:14
zerolit
zero [17] 85:17 93:10 126:18,23 128:20 132:25 134:7,11 140:19,20,24 140:25,25 141:11,11 143:16 195:6

