1 Q. Further to NP-98, with respect to the replacement of manufacturer non-2 supported equipment, answer the following questions or provide the 3 information appropriate on each budget item identified below:

4

5	Budget Item	Amount	Description
6	B-8	\$863,000	Replace Exciter Unit 1 – Cat Arm
7			(installed 1984)
8			
9	B-11	\$606,000	Replacement of Governor Control
10			Upper Salmon (installed 1982)
11			
12	B-68	\$556,000	Replace UHF Radio – Upper
13			Salmon (20 years old)

14

15

16

How much would it have cost for an additional set of spares (one additional for each type)? Estimate the cost if detailed information is not available.

17

18

19	A.	Budget Item	Amount	Description
20		B-8	\$863,000	Replace Exciter Unit 1 – Cat Arm
21				(installed 1984)
22				
23		An additional set	t of spares would h	ave cost \$81,592 in 1984.

2425

26

Spare cards are no longer available from the manufacturer. The manufacturer will repair the cards only if the components are available.

NP-222 2001 General Rate Application

			Page 2 of 2			
1	Budget Item	Amount	Description			
2	B-11	\$606,000	Replacement of Governor Control			
3			Upper Salmon (installed 1982)			
4						
5	An additional set	of spares would h	ave cost \$15,528 in 1982.			
6						
7	Spare cards are	no longer available	e from the manufacturer. The			
8	manufacturer wil	l repair the cards o	nly if the components are available.			
9						
10	Budget Item	Amount	Description			
11	B-68	\$556,000	Replace UHF Radio – Upper			
12			Salmon (20 years old)			
13						
14	As stated in our	As stated in our response to NP-98 B-68 Replace UHF Radio (Upper				
15	Salmon) part (g), the manufacturer no longer provides spares for this					
16	equipment. The	re is no estimate a	vailable for the cost of an additional set of			
17	spares at the tim	e of discontinuanc	e in 1990.			

1	Q.	For the budget item identified below provide the information as appropriate:				
2					.	
3		•	et item	Amount	Description	
4		B ·	– 10	\$1,555, 000	Install 25 kV Distribution Line	
5					- Ebbegunbaeg	
6						
7		a)	Provide th	e energy and unit	cost of energy (cents per kWh) used in	
8			the cost be	enefit analysis for	each year, both for isolated and	
9			interconne	ected alternatives.		
10						
11		b)	Provide th	e basis for the uni	t cost of energy used in the study.	
12						
13		c)	Provide a	cost benefit analys	sis using the revenue requirement or	
14			customer	cash flow method.		
15						
16						
17	A.	a)	Annual en	ergy consumption	for both the isolated and interconnected	
18			alternative	is estimated to be	e 380,000 kWh. Refer to attached table for	
19			energy co	sts.		
20						
21		b)	The foreca	ast cost for interco	nnected energy was based on the	
22			Holyrood t	hermal plant. Isola	ated energy costs were based on actual	
23			-	-	ata, and forecast diesel fuel costs.	
24				·		
25		c)	No ratepa	yers are serviced f	rom this distribution line. The use of this	
26		,	•		s facilities at the Ebbegunbaeg control	
27			structure.			

EBBE DISTRIBUTION LINE ECONOMIC ANALYSIS Yearly Costs for Isolated and Interconnected Energy Cents per kWh

Year	Isolated Energy Cost	Interconnected Energy Cost		
		<u> </u>		
2001	0.0	0		
2002	0.0	0		
2003	0.142	0.042		
2004	0.138	0.037		
2005	0.134	0.038		
2006	0.140	0.039		
2007	0.139	0.040		
2008	0.139	0.041		
2009	0.139	0.042		
2010	0.138	0.044		
2011	0.138	0.045		
2012	0.141	0.046		
2013	0.145	0.048		
2014	0.148	0.049		
2015	0.152	0.050		
2016	0.155	0.052		
2017	0.159	0.053		
2018	0.163	0.054		
2019	0.167	0.056		
2020	0.171	0.057		
2021	0.176	0.058		
2022	0.180	0.060		
Yearly Consumption 380,000 kWh				

EBBE DISTRIBUTION LINE ECONOMIC ANALYSIS Yearly Costs for Isolated and Interconnected Energy Cents per kWh

Year	Isolated Energy Cost	Interconnected Energy Cost		
		<u> </u>		
2001	0.0	0		
2002	0.0	0		
2003	0.142	0.042		
2004	0.138	0.037		
2005	0.134	0.038		
2006	0.140	0.039		
2007	0.139	0.040		
2008	0.139	0.041		
2009	0.139	0.042		
2010	0.138	0.044		
2011	0.138	0.045		
2012	0.141	0.046		
2013	0.145	0.048		
2014	0.148	0.049		
2015	0.152	0.050		
2016	0.155	0.052		
2017	0.159	0.053		
2018	0.163	0.054		
2019	0.167	0.056		
2020	0.171	0.057		
2021	0.176	0.058		
2022	0.180	0.060		
Yearly Consumption 380,000 kWh				

1	Q.	For the budget item identified below, provide the following information:			
2					
3		Budg	et Item	Amount	Description
4		B-18		\$177,000	Purchase Track Machine – Cat Arm
5					
6		(a)	Is it feasible	to utilize the Ste	phenville machine for access to Cat Arm
7			plant and to	groom the trail a	s is required for deep snow? If not, why
8			not?		
9					
10		(b)	Has Hydro c	onsidered reloca	ating the Stephenville machine to a
11			location in cl	oser proximity to	Cat Arm? If not, why not?
12					
13					
14	A.	(a)	The Stepher	nville machine co	ould be utilized to gain access to the Cat
15			Arm plant on	nly if it is not in u	se in the Western area. The purpose of
16			the Stephen	ville machine is	to provide emergency response for
17			problems on	the transmissio	n lines feeding customers in the area.
18			The addition	al use at Cat Ar	n would affect its availability during
19			emergencies	s in the Western	area and hence affect customer service.
20					
21		(b)	In 2000, Hyd	Iro did consider	the possibility of locating the machine at
22			Jackson's Ar	rm. However, it	was decided not to relocate the machine,
23			as during ext	treme storm con	ditions it would slow the response time to
24			emergencies	s in the Western	area and hence delay the restoration of
25			service to the	e effected custo	mers.

For the budget item identified below, provide the following information: Q.

-	٠.				ii, promas are renormig imerinaasiii
2					
3		Budg	get Item	Amount	Description
4		В	3-19	\$801,000	Purchase and Install Continuous
5					Emission Monitoring
6					
7		(a)	The health	risk assessment	report provided in response to NP-104 (c)
8			does not re	commend in-stac	ck measurement as has been proposed by
9			Hydro, but	recommends am	bient air monitoring stations. Explain how
10			this report p	provides a rationa	ale for installing in-stack monitoring?
11					
12		(b)	What sox/n	ox ratio was use	d in the report? What is a reasonable
13			range of so	x/nox ratios that	might be experienced? What sox/nox
14			ratio would	be expected to o	ause a problem?
15					
16					
17	A.	(a)	The health	risk assessment	report recommends the use of ambient air
18			monitoring	equipment to as	sess the validity of the SO_2/NO_2 ratio used
19			in the repor	t. This equipme	nt is expensive to install and operate and
20			could be us	sed for this purpo	se only. Hydro has proposed in-stack
21			monitoring	equipment becau	ise it could also be used to assist staff in
22			operating th	ne plant more effi	ciently while reducing emissions. Ambient
23			monitoring	equipment canno	ot perform this dual function for the
24			following re	asons:	

1		- Ambient monitoring equipment would be located at a significant
2		distance from the plant and therefore the measured emissions
3		would lag the real time plant conditions while in stack monitoring
4		equipment provides real time data.
5		
6		- Ambient monitoring equipment would be installed at several
7		discrete sites. On days when the wind diverts the stack plume in a
8		direction away from the monitoring sites, data recorded would not
9		represent the actual emission.
10		
11		- Ambient monitoring equipment and monitoring sites would be
12		remote from the generating plant and are therefore more
13		expensive to operate and maintain.
14		
15	(b)	The SOx/NOx ratio used was 15.576. The normal operating ratio is
16		dependent on the fuel and operating conditions. The range of
17		SOx/NOx ratio depends upon the boiler combustion conditions and
18		chemical composition of the fuel for a given time and hence it is
19		difficult to predict. The level that would be expected to cause a
20		problem from a regulatory standpoint is 2.571. This is based on the
21		provincial air pollution regulations, which state that the permitted
22		hourly SOx emission rate is 900 ppb/hr and the permitted hourly NOx
23		emission rate is 350 ppb/hr.

1 Q. For the budget item identified below, answer the following questions:

•)	•	
4	_		

3	Budget Item	Amount	Description
4	B-21	\$152,000	Purchase and Install Closed Circuit
5			Surveillance System - Holyrood
6			
7	Further to PUB-1	13.0, vandalism ove	er the past 6 years cost a total of \$29,857.
8	Assuming the sy	stem could have e	liminated the total cost of vandalism, is
9	the \$152,000 ca	pital expenditure ju	stified?

1011

12

13

14

15

16

17

18

19

Α.

The capital expenditure of \$152,000 is not justified based solely on the cost of vandalism over the last 6 years. There is very significant public safety concern as well as risk of serious damage to equipment. It has been difficult to provide adequate security coverage to all site locations, especially at the dock. The use of a closed circuit surveillance system would provide continuous monitoring of high exposure areas that are not currently monitored. Investigating officers from the RCMP have suggested video surveillance to help deter crime and to assist in the investigations.

1 Q. For the budget item identified below, provide the following information: 2

Budget Item	Amount	Description
B-35	\$981,000	Provide Service Extensions – Central, Northern and Labrador

3

Further to NP-107, provide the forecast 2001 and 2002 customer counts and unit extension costs per customer addition (material and labour) by region.

6

5

7 A. The unit extension costs per customer addition is as follows:

	Year	Materials	Labour	Total	No. of	Average
		\$	\$	\$	New	Per
					Customers	Customer
Central	2001	157,989	232,011	390,000	162	2408
Northern	2001	161,303	158,896	320,200	185	1731
Labrador	2001	191,785	125,215	317,000	225	1409
Total		511,077	516,122	1,027,200	574	1790

	Year	Materials \$	Labour \$	Total \$	No. of New	Average per
			•		Customers	customer
Central	2002	134,127	196,673	330,800	140	2363
Northern	2002	164,578	162,122	326,700	201	1625
Labrador	2002	200,798	122,202	323,000	230	1404
Total		499,503	480,997	980,500	571	1717

1 Q. For each project identified below, provide the following information:

2

3

4	Item	Amount	Description
5	B-45	\$297,000	Replace 136 kW Diesel Unit No. 279 - Grey River
6	B-47	\$238,000	Replace 75 kW Diesel Unit No. 252 – Petites
7	B-52	\$299,000	Replace 136 kW Diesel Unit No. 266 – William's Harbour
8	B-53	\$318,000	Replace 300 kW Diesel Unit No. 288 – Black Tickle
9	B-54	\$301,000	Replace 250 kW Diesel Unit No. 293 - Rigolet
40			

10

11

12

13

Further to NP-110, provide the expected lower maintenance costs, reduced fuel consumption and lower lube oil consumption in \$ per year for each replacement.

14

15 A. The units to be replaced are old technology and, as such, are likely 10 to
16 20% less efficient than equivalent equipment available today. The chart
17 below shows estimated cost savings based on a 15% reduction in fuel and
18 lube oil consumption. Based on actual emergency and corrective
19 maintenance costs, the estimated yearly maintenance savings per unit range
20 from \$3,800 to \$10,600 with an average of \$6,800.

Cost Reductions

Item	Description	Expected Yearly C (\$)	Cost Reductions
		Fuel	Lube Oil
		Consumption	Consumption
B45	Replace 136kW Unit 279 - Grey River	4,900	50
B47	Replace 75kW Unit 252 - Petites	3,300	30
B52	Replace 136kW Unit 266 - Williams Hr	4,900	50
B53	Replace 300kW Unit 288 - Black Tickle	11,000	70
B54	Replace 250kW Unit 293 - Rigolet	9,300	70

Note: Fuel and lube oil savings are based on the first full year of operation after installation.

1 Q. For the budget items identified below, answer the following questions:

		Budget Item	Amount	Description			
		B-57	\$515,000	Upgrade Diesel Plant - Harbour Deep			
2							
3		Further to NP-111,	has the diesel	plant building been inadequate since the			
4		date of initial install	ation? If no, at	what point did the building become			
5		inadequate, and for	r what reason?				
6							
7	A.	In the Fall of 1981,	the diesel plan	t was relocated to the current site to			
8		address the commi	unity's concern	with respect to the noise and potential fire			
9		hazard of the previous	ous plant which	was operating in close proximity to the			
10		school and private	residences.				
11							
12		This relocation resu	ulted in improve	ements when compared to the original			
13		facility but still was	not considered	as being fully to Hydro's standards.			
14		Subsequent installa	ation of larger e	engines and aging of the plant has			
15		contributed to the c	contributed to the operational and maintenance problems being now				
16		experienced.					
17							
18		With the continuing	debate regard	ing potential relocation of the residents of			
19		Harbour Deep, this	project has be	en deferred on a number of occasions.			
20		However, with no re	esolution of this	s issue combined with ongoing operational,			
21		maintenance and e	environmental c	oncerns with the plant, the current			
22		recommendation is	being made to	proceed with the proposed upgrade. In			
23		addition, Hydro is c	ontinuing to rev	view various alternatives to address the			
24		problems with the p	olant at Harbou	r Deep, including the potential for			
25		containerizing the u	units. This wou	ld facilitate use of the diesel units and			
26		switchgear at anoth	ner location if th	ney were not required in Harbour Deep at			

27

some future date.

1	Q.	The system identified below was purchased in 1989 and manufacturer						
2		supp	support terminated in 1991. Answer the following questions or provide the					
3		inforr	nation as a	ppropriate.				
4								
5		Bud	lget Item	Amount	Description			
6		ļ	B-66	\$8,373,000	Replace VHF Mobile Radio System			
7								
8		(a)	Further to	NP-117(a), pro	vide a copy of the cost benefit analysis of			
9			alternativ	es considered ir	the replacement of the current system.			
10								
11		(b)	Provide a	breakdown of b	oudget item by: (i) mobile, portable, base			
12			station ra	dio; (ii) switch aı	nd site controller; (iii) repeater; (iv) other			
13			equipmer	nt (providing a de	escription of the other equipment).			
14								
15		(c)	Provide the	ne incremental c	ost attributable to new coverage and a			
16			breakdow	n of that cost.				
17								
18		(d)	Provide a	cost benefit and	alysis indicating the financial benefit of			
19			deferring	the cost of radio	s and existing repeater equipment for three			
20			years.					
21								
22		(e)	Indicate v	vhat additional f	unctionality is being provided in the new			
23			system.	For example, wil	I the new system have digital radio			
24			capability	?				
25								
26		(f)	Further to	response NP-9	8(a), indicate the maintenance tickets issued			
27			for each y	ear (1996 to 20	00) attributable to switch/ controller,			
28			repeater,	or VHF radios.				

1	A.	(a)	A formal cost benefit analysis was not pe	erformed for this system as it
2			is a direct replacement for a currently op	erating system. The existing
3			system is critical to operational needs ar	nd therefore must be replaced
4			with a system of similar capabilities.	
5				
6		(b)	Of the alternative radio systems priced,	the chosen system Logical
7			Trunk Radio (LTR) was the least expens	sive, with direct material costs
8			estimated at \$5.7 million. Three other to	echnologies, TETRA, Motorola
9			SmartZone, and ComNet EDACS, were	priced with costs ranging from
10			\$7.9 million to \$11.7 million.	
11				
12		(c)	The incremental cost of providing new c	overage is based on the
13			assumption that six new repeaters will b	e required, and of that six,
14			three repeaters will include new towers,	and three will use existing
15			towers. It also assumes that the paging	system coverage increase is
16			performed using repeater equipment rer	noved from existing sites. The
17			total direct incremental cost is estimated	to be \$775,000, broken down
18			as follows:	
19				
20			<u>ltem</u>	Estimated Cost
21			Towers	\$450,000
22			Repeaters	\$315,000
23			Paging Equipment	\$10,000
24				
25		(d)	Relying on the existing switch, which has	s not been supported by the
26			manufacturer since 1991, for another the	ee years would jeopardize the
27			stability of the entire mobile radio system	n. This is the last system of

this type in service anywhere, and failure will result in total loss of VHF

28

Page 3 of 4

mobile communications. From a safety and operational perspective, 2 the risk of delaying the project greatly outweighs the financial benefit of deferring the project for three years. With this in mind, the net difference in cost of delaying the replacement of the system for three years is estimated to be approximately \$1.4 million, assuming no salvage value for the existing equipment.

7

8

9

10

11

12

13

14

15

16

17

18

19

1

3

4

5

6

The proposal as submitted is to replace the existing system with a (e) standard based trunked radio system. The proposed system, by being based on an open standard, prevents the Corporation from becoming reliant on a single source of equipment and thereby protects the investment for its useful life. A trunked radio system offers functional advantages and will in many cases eliminate the need for cellular telephones for operational on-call staff, thereby reducing operating expenses. The proposed system offers such features as: privacy, individual and group calling, roaming, Automatic Vehicle Location (AVL) capability, and low speed data capability. A trunked system ensures that future expansion requirements are easily met without large re-investment in design and procurement.

20

21

22

23

24

25

26

27

28

(f) Mobile radio outage maintenance ticket summaries are provided below. Please note that mobile and portable radio repairs are not normally ticketed, so exact numbers of problems are not available for these pieces of equipment. It is estimated that as many as 500 repairs on portable and mobile radios were actually conducted in the five year period 1996-2000. Also, the trouble ticketing system cannot distinguish between repeater radio and controller outages, so these are listed together.

NP-231 2001 General Rate Application Page 4 of 4

			Page 4 of 4
1		Tick	et Type
2	Year	Switch	Repeater/Controller
3	1996	11	34
4	1997	4	30
5	1998	6	29
6	1999	3	22
7	2000	1	18
8	2001 (to date)	4	13
9	TOTAL	29	146

1	Q.	F	or the budget ite	em identified below	y, provide the following information:
2					
3			Budget Item	Amount	Description
4			B-69	\$8,942,000	Complete Microwave Radio
5					System Interconnection
6					
7		(a)	Provide the s	urvey noted in resp	oonse to NP-118.
8					
9		(b)	Is Hydro awaı	re of any electric ut	ilities that utilize any communications
10			facilities that	are not owned by tl	hat utility and are used to support tele-
11			protection or	SCADA circuits. P	rovide all instances.
12					
13		(c)	Provide a fore	ecast of annual lab	our components of operating and
14			maintaining th	ne microwave syste	em for the period 2002 to 2006.
15					
16		(d)	Provide all ins	stances where any	microwave channel was not available
17			over the past	five years, when th	ne outage occurred, the time it was not
18			available and	the nature of the fa	ailure.
19					
20					
21	A.	(a)	Attached is a	copy of the survey	results as noted in response to
22			NP-118.		
23					
24		(b)	The survey ur	ndertaken by Hydro	was of electric utilities with a similar
25			mandate to th	at of Newfoundlan	d and Labrador Hydro, that being a
26			bulk generation	on and transmissio	n utility. The only instance noted
27			where telepro	tection services ar	e provided by a leased carrier circuit
28			was by B.C. H	Hydro, and that was	s only where there was no other

2001 General Rate Application

Page	2	οf	4

		Page 2 01 4
1		practical alternative. Also both New Brunswick Power and Manitoba
2		Hydro will use leased common carrier circuits for backup
3		teleprotection, the main teleprotection circuits are on utility owned
4		facilities.
5		
6		All utilities with the following exception use leased common carrier
7		circuits for SCADA purposes:
8		
9		- Saskatchewan Power for city distribution only;
10		- B.C. Hydro when there is no practical alternative.
11		
12	(c)	There is no forecast of annual labour component of operating and
13		maintaining the microwave system for the period 2002 to 2006.
14		Based on our experience, as this infrastructure will be new, the
15		incremental labour component for the four (4) sites is considered
16		minimal.
17		
18	(d)	Since Hydro's West Coast Microwave infrastructure was replaced in
19		1999, there has been no time (i.e. circuit availability was 99.9999% or
20		better) that a circuit has been unavailable.

UTILITY TELECOMMUNICATIONS SURVEY JANUARY 2001

Tachmalamı	114:1:4	Number	of Links	Sei	vices	
Technology	Utility	Existing	Planned	Teleprotection	SCADA	Misc.
	NF Hydro	0	0	-	-	-
	NB Power	0	0	-	-	-
	Hydro Quebec	54	10	Х	Х	Х
UTILITY	Hydro One	30	20	Х	Х	Х
OWNED OPGW	Sask. Power	2	0	Х	х	Х
	Manitoba Hydro	4	0	Х	х	Х
	Atco. Electric	2	0	Х	-	-
	BC Hydro	0	0	-	-	-
	NF Hydro	5	2	Х	х	Х
	NB Power	2	1	Х	х	Х
HTH ITY	Hydro Quebec	375	25	Х	Х	Х
UTILITY OWNED	Hydro One	20	20	Х	х	Х
FIBER	Sask. Power	40	2	Х	Х	Х
FIDEN	Manitoba Hydro	25	0	Х	Х	Х
	Atco. Electric	0	0	-	-	-
	BC Hydro	8	6	-	-	-
	NF Hydro	11	9	Х	Х	Х
HTH ITV	NB Power	2	0	Х	Х	Х
UTILITY OWNED	Hydro Quebec	30	41	Х	Х	Х
ASYNCHRONOUS	Hydro One	4	1	X	Х	Х
MICROWAVE	Sask. Power	0	0	-	-	-
RADIO	Manitoba Hydro	60	0	Х	Х	Х
ITABIO	Atco. Electric	45	3	X	X	X
	BC Hydro	8	0	-	-	
	NF Hydro	4	8	Х	х	Х
IITII ITV	NB Power	16	15	Х	Х	Х
UTILITY	Hydro Quebec	11	87	Х	Х	Х
OWNED SONET	Hydro One	4	16	Х	Х	Х
MICROWAVE	Sask. Power	0	0	-	-	-
RADIO	Manitoba Hydro	4	0	X	X	Х
ITABIO	Atco. Electric	0	0	-	-	-
	BC Hydro	40	50	-	-	-
	NF Hydro	7	1	Х	Х	Х
UTILITY	NB Power	many	0	-	Х	X
OWNED	Hydro Quebec	25	0	-	Х	Х
MISC. RADIO	Hydro One	2	0	-	Х	-
UHF, VHF &	Sask. Power	4	0	-	-	Х
SPREAD SPECTRUM	Manitoba Hydro	27	2	-	-	Х
	Atco. Electric	30	0	-	Х	Х
	BC Hydro	many	0	-	-	-

Tachnology	1 14:1:4.	Number	of Links	Ser	vices	
Technology	Utility	Existing	Planned	Teleprotection	SCADA	Misc.
	NF Hydro	2	0	-	Х	Х
	NB Power	1	0	-	-	Х
	Hydro Quebec	10	0	-	-	Х
LEASED/OWNED	Hydro One	70	0	-	Х	Х
SATELLITE	Sask. Power	4	0	-	Х	Х
	Manitoba Hydro	10	0	-	-	Х
	Atco. Electric	0	0	-	-	-
	BC Hydro	15	0	-	-	Х
	NF Hydro	30	4	Х	Х	Х
UTILITY	NB Power	2	0	Х	Х	Х
	Hydro Quebec	80	0	Х	Х	Х
OWNED POWER LINK	Hydro One	250	30	Х	Х	Х
CARRIER	Sask. Power	82	0	Х	Х	Х
CARRIER	Manitoba Hydro	29	2	Х	Х	Х
	Atco. Electric	3	0	-	Х	-
	BC Hydro	80	0	-	-	-
	NF Hydro	60	24	-	Х	Х
	NB Power	4	0	Note 1	-	-
LEASED	Hydro Quebec	900	0	-	Х	X
COMMON	Hydro One	600	100	Note 2	Х	X
CARRIER	Sask. Power	16	0	-	Note 3	-
CIRCUITS	Manitoba Hydro	365	0	Note 1	Х	Χ
	Atco. Electric	6	0	-	Х	Χ
	BC Hydro	Note 5	Note 5	Note 4	Note 4	Note 4

Legend:

OPGW Overhead Optical Ground Wire

NOTE 1: Backup teleprotection circuit, main teleprotection circuit on owned facilities

NOTE 2: Non-critical circuits only

NOTE 3: City distribution substations only

NOTE 4: Used when there is no other practical alternative

NOTE 5: No number identified, but services are used

x Yes

- No, or no response

1	Q.	For the	ne budget item identified below, answer the following questions.					
2								
3		Budg	get Item	Amount	Description			
4		В	3-14	\$127,000	Upper Salmon Generating Station			
5								
6		(a)	Further to P	UB-6.1, provide r	eliability statistics and/or instances, either			
7			from Hydro'	s own records or	from the information of other utilities, that			
8			show the in	stallation of the p	oposed equipment increases reliability			
9			through the	reduction of outa	ges.			
10								
11		(b)	For each ins	stance shown in t	he response to PUB-6.2, provide the			
12			date, time a	nd duration as we	ell as the cause of the outage. In addition			
13			indicate the	likely reduced ou	tage time had the fault recorder been in			
14			place for ea	ch outage.				
15								
16								
17	A.	(a)	A fault reco	rder assists in the	identification of the fault and verifying			
18			the perform	ance of the prote	ctive relaying systems. It is useful in			
19			identifying a	ny problems and	hence aids in faster restoration of the			
20			equipment.					

Page 2 of 2

b)

1

2

3

4

5

6

Date	Time	Duration	Cause
07-24-2000	00:50	6 mins.	Lightning
08-21-2000	02:13	2 mins.	Lightning
11-09-2000	10:42	2 hrs, 41 mins	Relay malfunction
11-16-2000	10:13	31 mins.	Relay malfunction
05-08-1999	20:38	26 hrs.	Broken crossarm
08-26-1999	16:09	4 mins.	Lightning
12-19-1998	07:26	8 hrs, 17 mins.	Fallen tree on the line
07-24-1995	12:54	6 mins.	Lightning

For the outages caused by lightning, a fault recorder would not have reduced the outage time. However, for the other outages caused by fallen trees, broken cross-arm and relay malfunction, a fault recorder would have assisted in identifying the problem and the location of the fault and hence reduced outage times. The exact amount of reduction in outage times cannot be quantified.

Q. For the budget item identified below, answer the following question.

		Budget	Amount	Description
2		<i>Item</i> B-32	\$51,000	Purchase and Install Remote Communications Equipment – Buchans & Stony Brook
3		Further to DLIR	23.1 docum	nent each instance (time, duration and cause of
4				o years where data was retrieved for fault
		G ,	•	•
5		,		emote access would have improved restoration
6				dicate improvement in restoration time that would
7		have been expe	ected had thi	is equipment been in place.
8				
9	A.	Of the outages	in Buchans	and Stony Brook during the past two years, the
10		proposed equip	ment could i	not have been used to reduce the outage times
11		on these particu	ılar outages.	However, similar remote communication
12		systems have b	een installed	d and operating for over ten years in other
13		stations. These	e are St. Antl	hony Airport, Bottom Brook, Doyles, Bay d'Espoir
14		and Sunnyside.	Information	has been collected from these sites which has
15		been used to re	duce outage	e times.
16				
17		For example: r	emote comm	nunication was installed on TL 214 out of Bottom
18		Brook in 1991.	This has be	een used to instruct line crews where the fault
19		was on the line.	The crew t	raveled directly to this area and took measures to
20		correct the prob	lem. If the f	ault location was not known, the crew would start
21		at the beginning	g of the line a	and could take hours to find the damage.
22				
23		Advances in ted	chnology, su	ch as this, when available to utilities does assist
24		in providing fas	ter restoratio	on to customers.

Q. For the budget item identified below, answer the following questions or
 provide the information as appropriate:

Budget item	Amount	Description		
B – 31	\$149,000	Replace Transformers –		
		Burlington Substation		

Further to PUB-31.1, indicate the size of the existing transformer bank, the proposed size of the padmount transformer, and the transformer load under normal peak load conditions (excluding cold load pick up) for each of the past 5 years. What were the factors that increased the peak load, necessitating the transformer bank replacement?

A. The existing transformer bank has a capacity of 1,500 kVA, and is comprised of 3 – 500 kVA single-phase units. The replacement transformer will be a 3-phase 2,500 kVA unit. Peak values for the past 5 years are as follows:

	Transformer Peak Loading								
Year		A - Phas	se		B - Pha	se	C - Phase		
	Amps	kVA	% Rating	Amps	kVA	% Rating	Amps	kVA	% Rating
1995	82	590	118	92	662	132	98	706	141
1996	68	490	98	66	475	95	82	590	118
1997	84	605	121	86	619	124	96	691	138
1998	78	562	112	78	562	112	92	662	132
1999	999 No Data			No Data		No Data			
2000	70	504	101	97	698	140	87	626	125

The replacement is required because the transformers have been, and continue to be, overloaded.

1 Q. For the budget item identified below, provide the following information.

2

Budget Item	Amount	Description
B-49	\$556,000	Relocation of Line – Cook's Harbour

3

5

6

7

Further to PUB-31.0 (sic), indicate all instances over the past five years where outages have occurred to this line section. For each instance, indicate date, time and duration of outage as well as underlying cause. If data is not available for line section only, provide information for whole feeder.

8

A. In reference to PUB-33, the following table details the outages of that section of the Cooks Harbour Line.

9 10

DATE	TIME	DURATION	NO. OF CUST.	CAUSE
96-02-09	1300 hrs	1 hr. 30 min	12	Scheduled
96-04-13	1145 hrs	3 hrs	244	Adverse Weather
96-05-14	1630 hrs	1 hr. 30 min	9	Adverse Weather
96-07-09	2200 hrs	2 hrs 15 min	240	Unknown
96-08-10	2200 hrs	3 hrs 10 min	222	Adverse Weather
96-12-13	1230 hrs	2 hrs	222	Scheduled
97-02-02	1130 hrs	2 hrs 30 min	16	Adverse Weather
97-02-08	0140 hrs	9 hrs 10 min	50	Adverse Environment
97-04-07	0800 hrs	2 hrs 30 min	2	Adverse Environment
97-05-17	1130 hrs	5 hrs 45 min	235	Adverse Weather
97-10-09	1130 hrs	4 hrs	12	Unknown
97-10-17	1330 hrs	2 hrs	1	Adverse Weather
97-10-28	2300 hrs	38 hrs 30 min	46	Adverse Environment
97-10-28	2300 hrs	69 hrs	1	Adverse Environment
97-10-28	2300 hrs	43 hrs	1	Adverse Environment
97-10-29	0500 hrs	29 hrs 20 min	183	Adverse Environment
98-02-22	0100 hrs	8 hrs	1	Adverse Environment
98-02-24	1230 hrs	50 min	230	Defective Equipment
98-03-11	1330 hrs	1 hr. 30 min	240	Unknown

NP-236 2001 General Rate Application Page 2 of 2

DATE	TIME	DURATION	NO. OF CUST.	CAUSE
98-07-02	1700 hrs	2 hrs	228	Adverse Weather
98-09-06	0430 hrs	4 hrs	228	Adverse Weather
98-10-02	0700 hrs	2 hrs 30 min	76	Adverse Weather
98-10-13	0930 hrs	4 hrs	1	Adverse Environment
98-11-16	1330 hrs	64 hrs	1	Adverse Weather
99-01-16	1600 hrs	7 hrs	15	Adverse Environment
99-01-16	1800 hrs	17 hrs 40 min	430	Adverse Environment
99-01-20	2000 hrs	13 hrs	223	Adverse Environment
99-01-22	1230 hrs	3 hrs 15 min	223	Unknown
99-02-06	2400 hrs	12 hrs	17	Adverse Environment
99-02-06	2400 hrs	13 hrs 30 min	28	Adverse Environment
99-02-07	1100 hrs	9 hrs	1	Adverse Environment
99-02-07	0200 hrs	30 min	100	Adverse Environment
99-02-15	2230 hrs	3 hrs	18	Adverse Environment
99-02-16	0100 hrs	30 min	223	Adverse Environment
99-02-21	1230 hrs	50 min	240	Unknown
99-03-02	2100 hrs	3 hrs 45 min	223	Adverse Weather
99-08-07	2230 hrs	8 hrs 30 min	1	Adverse Weather
99-08-07	2200 hrs	2 hrs 30 min	223	Adverse Weather
99-08-08	2230 hrs	6 hrs	8	Adverse Weather
99-08-25	1030 hrs	20 min	40	Unknown
99-09-12	0400 hrs	5 hrs	230	Unknown
00-01-21	0650 hrs	1 hr. 40 min	47	Unknown
00-01-21	0650 hrs	8 hrs 10 min	6	Unknown
00-03-30	0227 hrs	2 hrs 33 min	223	Adverse Weather
00-05-15	0500 hrs	2 hrs	230	Adverse Environment
00-07-31	1215 hrs	2 hrs 15 min	223	Unknown
00-09-08	1230 hrs	2 hrs 20 min	223	Scheduled
00-10-20	1145 hrs	40 min	223	Scheduled
00-11-07	1505 hrs	40 min	223	Unknown
00-11-07	2000 hrs	2 hrs 40 min	223	Unknown
00-12-12	0700 hrs	3 hrs 45 min	49	Adverse Weather
00-12-12	2230 hrs	3 hrs 45 min	60	Adverse Environment
00-12-14	1030 hrs	1 hrs	213	Scheduled