Overview

You have opened the first of two files that comprise the contents of Pkg # 22, which was sent to the Board of Commissioners of Public Utilities on September 18, 2001 via a letter from Maureen Greene to G. Cheryl Blundon. The responses to the Requests for Information contained in the attached are listed on the letter, which can be found on page 3 to 51 of this file.

Disclaimer

The information made available in these files is provided as a service to the public and our customers. We have taken great care to ensure and maintain the accuracy and authenticity of information contained in this file; however, some information may inadvertently be inaccurate or dated. Accordingly, all figures, dimensions, statements and language are offered on an "as is" basis and without warranties of any kind, either express or implied. Anyone intending to rely on any of the information in this file should first confirm the accuracy and authenticity of such information with Newfoundland and Labrador Hydro at (709) 737-1370. We encourage users to contact us if you have any questions about the information presented or to identify any errors in these files.

Newfoundland and Labrador Hydro does not warranty that the functions contained in these files are free from viruses or other harmful components.

Newfoundland and Labrador Hydro nor any of its subsidiaries or affiliates, their employees, officers and directors shall be liable for any loss or damage, direct or indirect, which may arise or occur as a result of the use of or reliance upon any of the information provided in these files.

All trademarks and trade names referred to or reproduced in these files are proprietary to their respective owners.

Revised July 31, 2001

Page B-28

TRANSMISSION:

Replacement of Insulators - TL229 (69kV Wiltondale - Glenburnie) (\$145,000)

Nature of Project

This project involves the replacement of insulators on this 35 km, 25-year-old 69 kV line from Glenburnie Terminal Station to Wiltondale Terminal Station. An insulator inspection and testing program demonstrated deteriorating insulator conditions that will result in mechanical stress failures. This line has a total of 2,100 suspension and 735 post type insulators. This project will replace *150* insulators.

Customer Impact

*

Failure to complete this work could result in the interruption of power supply to Hydro's customers.

Cost Benefit Study

A formal cost benefit study was not required.

Future Commitments

There are no future commitments, this project will be completed in 2002.

Revised July 25,2001

Page B-39

RURAL SYSTEMS:

Replace Insulators - South Brook Distribution System(\$317,000)

Nature of Project

This project involves the replacement of insulators on the South Brook Distribution System. The line on the South Brook Distribution system consists of a 34-year old section from Roberts Arm to Pilley's Island, and a 21-year old section from Pilley's Island to Long Island. Both sections have Canadian Ohio Brass (COB) insulators which are deteriorating with hairline cracks. Hydro has experienced major outages of 20-minute to 21-hour durations affecting anywhere from 173 to 1,283 customers. This line has 1995 suspension and 1,500 pintype insulators. This project will replace *1,420* insulators.

will replace 1,420 msulat

Customer Impact

*

Failure to complete this work could result in the interruption of power supply to Hydro's customers.

Cost Benefit Study

A formal cost benefit study was not required.

Future Commitments

There are no future commitments, this project will be completed in 2002.

Revised Sept. 18, 2001

Page B-55

RURAL SYSTEMS:

Upgrade - Fuel Storage - Nain (\$339,000)

Nature of Project

This project involves the installation of a new liner under the fuel storage tanks, upgrading the dyke walls, upgrading the fuel transfer system, and improving drainage around the perimeter of the site.

This fuel storage site was constructed in *1974* and does not meet the current Storage and Handling of Gasoline and Associated Products (GAP) Regulations.

Customer Impact

There is no direct customer impact.

Cost Benefit Study

A formal cost benefit study was not required.

Future Commitments

There are no future commitments, this project will be completed in 2002.

Page B-61

GENERAL PROPERTIES:

Purchase Additional Corporate Applications (\$517,000)

Nature of Project

This project involves the assessment and purchase of technical and business software. Where a business case warrants, speciality software will be purchased and implemented to address planned business processes.

Hydro must be able to address additional software requirements to support the streamlining, enhancement, and automation of business functions as required during the budget year.

Customer Impact There is no direct customer impact.

Cost Benefit Study A formal cost benefit study was *not* required.

Future Commitments There are no future commitments, the project will be completed in 2002.

Newfoundland and Labrador Hydro
Demand and Energy Requirements
Forecast 2001 – 2010 ¹
Total Island Interconnected System ²

<u>Year</u>	MW	<u>GWh</u>
2000 Actual	1443	8057
2001	1576	8240
2002	1602	8316
2003	1611	8384
2004	1632	8479
2005	1652	8560
2006	1673	8639
2007	1696 (Revised)	8734
2008	1719	8831
2009	1735	8894
2010	1741	8929

 ¹ Source: Long-Term Planning Load Forecast 2001.
 ² Includes load requirements met by Hydro's sources and customers' generation facilities.

1 2 3 4 5 6 7	Q.	Schedule XII of Mr. Budgell's Prefiled Testimony indicates that the 46 MW of Interruptible Load is included in the peak load forecast and used in the determination of LOLH. How is it included in the LOLH determination and how are customers ensured that they are receiving equivalent benefit for the reduced revenue derived from interruptible customers?
8	A.	The 46 MW Interruptible Load is included in the peak load forecast for Abitibi
9		Stephenville (i.e. the 46 MW is not netted off of the Abitibi Consolidated Inc.
10		Stephenville peak load forecast). In Hydro's models of the Island
11		Interconnected System it is treated as a dispatchable resource (subject to the
12		provisions of the contract) available to meet the load of the system.
13		Therefore, when simulating the operation of the system out over time, the
14		value of the contract is reflected in the results of the system simulations.
15		
16		Please refer to the response to NP-133 for a discussion of the benefit for
17		reduced revenue derived from interruptible customers.

1	Q.	On numerous occasions in the Prefiled Testimony of Hydro's experts,
2		reference is made to the next Rate Application. Mr. Osmond on page 9, lines
3		4 to 19 of his Prefiled Testimony states that Hydro is not proposing to
4		commence implementation of all of the recommendations in the Board's
5		1996 Report starting in 2002. Provide the list of recommendations included in
6		the 1996 Report, and indicate which of these recommendations have been
7		implemented, or are proposed to be fully implemented in this application. List
8		the items that Hydro has proposed to address in the next rate application.
9		
10	Α.	See attached.

CA-58 Revised 2001 General Rate Application Page 2 of 6

PUBLIC UTILITIES BOARD **REPORT ON RURAL ELECTRICAL SERVICE** JULY 29, 1996

RECOMMENDATIONS	HYDRO'S POSITION/IMPACT
 (1) The Board is not recommending any increase in the rates charged in electrically isolated systems, for the first, second or third blocks of energy, nor is it recommending any change in the monthly domestic customer charge of \$16.71. (2) The Board recommends that the first block remain unchanged at 700 	It was Hydro's position at its last rate application in 1992 that the second block should be eliminated and rates in the end block gradually increased. Hydro will address this issue at its next rate application. Hydro agrees with this position.
kWh per month (for domestic customers)	
(3) The Board recommends that Hydro prepare a detailed calculation of long run marginal costs. In the event that a detailed estimate of long run marginal cost confirms it to be significantly below the current energy rate, the Board recommends that consideration be given to reducing the energy rate to a level closer to long run marginal costs (for general service customers).	Please see response to NP-184.
 (4) The Board recommends that the special general service rate for the first 700 kWh per month, which was established by Order-in-Council in 1989, be eliminated. No change is recommended for the basic customer charge. 	Hydro concurs with this recommendation and will address this issue at its next rate application as part of its five year rate implementation plan.
(5) The Board recommends that Hydro be directed to provide a cost benefit analysis of a rate structure for general service customers which provides for a demand charge. The energy and demand charge in such a rate structure should recover long run marginal cost.	Please see response to NP-184

	Page 3 of 6
RECOMMENDATIONS	HYDRO'S POSITION/IMPACT
(6) The Board recommends that preferential rates be phased out. The phase out period should be five years.	Hydro concurs with this recommendation. Hydro, at its next rate application, will be addressing this issue as part of its five year rate implementation plan. See recommendation number 7.
(7) The Board recommends that a new rate be designed for federal and provincial departments and agencies and these rates, phased in over five years, should recover full costs (i.e. 100% cost recovery).	Hydro concurs with this recommendation and has in its current rate application before the Board recommended starting the phase out in 2002 and to complete the phase out over a further five year period after Hydro's next rate application.
(8) The Board recommends that both generation assets and the 138 kV transmission line on the Great Northern Peninsula be assigned, on a provisional basis, as being of common benefit to all interconnected customers and that sub-transmission costs (for lines whose voltage is below 138 kV) be specifically assigned. The Board further recommends re-examination of these costs assignment decisions, and the rules for cost assignment, at a future hearing.	Hydro concurs with this recommendation, and has implemented the recommendation in the current rate application.
(9) The Board recommends that the treatment of the Roddickton Woodchip Plant be 100% demand related, as proposed by Hydro.	The Roddickton Woodchip Plant was removed from service with PUB approval in 2000.
(10) The Board recommends that future cost of service reports be generated with six separate studies:	Hydro concurs with this recommendation and has included this information in its 2002 Cost of Service Study.
 (1) Rural Island Interconnected; (2) Newfoundland Light & Power; (3) Island Industrials; (4) Labrador Interconnected; (5) Isolated Island Systems; and (6) Isolated Labrador Systems 	

	Page 4 of 6
RECOMMENDATIONS	HYDRO'S POSITION/IMPACT
(11) The Board recommends that Hydro provide, as part of future cost of service reports, the specific policies as well as an allocation schedule related to operation and maintenance overheads.	Hydro concurs with this recommendation and has included such information in NP-132.
(12) The Board recommends elimination of interest margin on the Hydro Rural Interconnected system and that a rate of return not be allowed on rural electrical assets, as long as the rural system is operating on a deficit basis.	Hydro has excluded these items from its 2002 Cost of Service Study.
(13) The Board recommends that Hydro and Newfoundland Power establish a joint task force to identify measures whereby cost savings can be achieved, both in isolated and interconnected rural systems.	Hydro and Newfoundland Power have held discussions to explore opportunities for co-ordination in an effort to lower the overall cost of providing service to electrical customers on the Island. A Memorandum of Understanding is in place covering the sharing of services and equipment during emergencies.
(14) The Board recommends that independent consultants should be retained to study the isolated systems for the purpose of identifying all possible cost savings and efficiency improvements. The consultant should provide Hydro with targets and with a tracking system by which to measure progress toward achieving these targets.	Hydro does not concur with this recommendation and it does not plan to implement.
(15) The Board recommends a study of system losses be conducted to improve measurement of station service and line losses.	A field investigation program was implemented to identify metering and reporting deficiencies. Plant metering equipment has been checked and re-calibrated. In addition, new electronic meters have been installed.
(16) The Board recommends an enhanced consumer education	Hydro concurs with this recommendation and has taken

	Page 5 of 6
RECOMMENDATIONS	HYDRO'S POSITION/IMPACT
program be undertaken in isolated areas, to promote greater understanding of the costs and operations of the electrical system and the effect of consumer decisions upon electrical loads and costs. Dissemination of information describing the full cost of the electricity they consume would be a major component of such an education program.	action to facilitate this activity by the creation of a Customer Services Department. Increasing consumer education and improving customer service has been a major activity of the Customer Services Department.
 (17) The Board recommends each bill should show the full embedded cost of the energy consumed, as well as the amount charged to isolated rural customers. (18) The Board recommends design 	Hydro has not implemented this recommendation. Please see response to NP-
criteria for plant and ancillary equipment should be re-examined, with a view to ensuring reliability requirements are not unduly stringent, particularly in communities operating close to capacity limits.	184(d).
(19) The Board recommends tendering practices for fuel should be reviewed, along with the possibility of larger scale purchases and regional storage facilities.	In 1996, Hydro tendered its fuel requirements for a three-year term. The specification was structured in an attempt to reduce fuel costs through large-scale purchases. No competitive advantage was realized as typically each vendor dominates supply in a specific region. Subsequently, in 1999, after reviewing its option Hydro tendered its five-year requirements based on previous practice of tendering prices for individual sites. Hydro continues to evaluate the cost benefit of providing its own regional storage facilities versus leasing from third parties.

	Page 6 of 6
RECOMMENDATIONS	HYDRO'S POSITION/IMPACT
(20) The Board recommends an experimental project should be designed by selecting a community facility, such as a school or other public building, in close proximity to a diesel plant, whereby heat from the diesel plant can be recovered. Such a demonstration project might provide a model for research and for subsequent technology transfer.	Hydro initiated a pilot project in 1994 with a church in Mary's Harbour for the sale of waste heat from our diesel plant. The pilot project is in service and a report and recommendations are to be completed in 2001.
(21) The Board recommends alternative technologies should be examined to ensure that all opportunities for cost reduction are fully realized. New technologies for harnessing wind power should be given particular attention.	Hydro continues to monitor alternative technologies for opportunities of cost-effective applications in the isolated diesel areas. However, to date, the most cost-effective and practical supply is diesel generation.
	In 1997 Hydro participated in a joint study with Newfoundland Power into the potential for mini- hydro in Island Rural Isolated Systems. In 1998, Hydro worked with the Atlantic Wind Test Site (AWTS) in PEI to investigate the integration of wind energy technology at St. Brendans and is currently reviewing a proposal from the AWTS for a wind demonstration project in Ramea.
(22) The Board recommends conservation programs for isolated areas should be designed to defer expansion of capacity and to target for subsidy reduction rather than lower energy use. Demand side management should be directed toward those systems which will soon require capacity expansion.	Please see response to NP- 184(e).

1	Q.	Provi	de a Table which shows the following for each of the years 1994 - 2000
2		inclus	sive assuming the implementation of the Cost of Service Methodology
3		appro	oved in the Public Utility Board 1993 Report (where the vertical axis
4		repre	sents the years and the horizontal access the following data):
5		1.	the demand rate which would have been charged the Industrial
6			Customers for firm power and for each class of non-firm service;
7		2.	the energy rate which would have been charged the Industrial
8			Customers for firm power and for each class of non-firm service and
9			for wheeling;
10		3.	the Specifically Assigned Charges which would have been charged
11			Industrial Customers, and the total for all Industrial Customers;
12		4.	the total number of kWh sold to the Industrial Customers for those
13			years for firm power and for each class of non-firm service and for
14			wheeling;
15		5.	the total dollar amount which would have been billed to the Industrial
16			Customers in those years, exclusive of sales tax, for firm power and
17			for each class of non-firm service and for wheeling (indicate subtotals
18			for each class of service and overall total);
19		6.	the average cost per kilowatt hour which would have resulted;
20		7.	the total dollar amount which was billed to Industrial Customers;
21		8.	the average cost per kilowatt hour which was billed to Industrial
22			Customers;
23		9.	the difference between (5) and (7).
24			
25	Α.	In res	ponse to an Application to the Board by Industrial Customers, Hydro
26		will fil	e the following Cost of Service Studies as a means of meeting the
27		requii	rements of this request:

		IC-18 (Rev 2) 2001 General Rate Application
1	(a)	Page 2 of 2 1999 Actual (Rev) - Generic Methodology (Attached)
2	(b)	2002 Test Year - Generic Methodology (Attached)
3		
4	The f	following will be filed as per the agreement reached with Industrial
5	Cust	omers as outlined at the August 29 th , 2001 meeting with the Public
6	Utiliti	es Board:
7	(C)	2000 Actual – Interim Methodology
8	(d)	2000 Actual – Generic Methodology
9	(e)	1997 Actual – Interim Methodology
10	(f)	1997 Actual – Generic Methodology
11	(g)	2001 Forecast – Interim Methodology
12	(h)	2001 Forecast – Generic Methodology
13		
14	The t	terminology used by Hydro when referring to Cost of Service
15	meth	odologies is as follows:
16	Inte	rim Methodology – Methodology as approved in the PUB report
17		dated April 13, 1992. Recommendation 11 of that report states that
18		"Hydro's proposed cost of service methodology be used until it is
19		examined more fully at another hearing".
20	Gen	eric Methodology – Methodology as approved in the PUB report
21		dated February, 1993. Recommendation 26 of that report states
22		"That the cost of service methodology recommended herein be
23		adopted by Hydro for the purpose of its next rate referral".
24	Prop	posed Methodology – Methodology as contained in the Cost of
25		Service Study in the pre-filed evidence of Mr. John Brickhill, Exhibit
26		JAB-1. The proposed methodology is based on the generic
27		methodology adjusted as outlined in the written testimony of Mr.
28		Brickhill.

	Inductive Constants are previde a breakdown of the company parts of each of
	Industrial Customers provide a breakdown of the component parts of each of
	those forecast Specifically Assigned Charges and identify any Specifically
	Assigned Charges proposed to be included in 2002 Specifically Assigned
	Charges which have not been charged in previous years and the dollar
	amount of and rationale for each proposed change.
Α.	Please refer to IC-117 for a breakdown of the component parts of each of the
	2002 forecast specifically assigned charges.
	Specifically assigned charges related to the two frequency converters are the
	only charges not previously charged to Industrial customers. Please refer to
	IC-41.1(Rev.2) for the component breakdowns associated with these assets.
	The frequency converters were reassigned following a review of plant
	assignments undertaken in preparation for this rate application. In the initial
	years of the Island Interconnected System, the frequency converters at
	Corner Brook and Grand Falls were of benefit to each of the industrial
	customers, Newfoundland Power and the grid as a whole. With the continued
	expansion of the transmission system and the construction of generating
	stations at Cat Arm and Hinds Lake, operation of the frequency converters
	has little impact on the 230 kV system voltage levels. The role of the
	frequency converters has been reduced to providing local voltage control for
	the mill power systems and transferring power from 50 Hz to 60 Hz for use
	within the individual paper mills. With the frequency converters being only of
	benefit to the respective customers, the assets were specifically assigned to
	each of the industrial customers they serve.
	A.

1	Q.	Provide a Schedule in the form of Schedule I to the evidence of H.G. Budgell
2		showing each of the years from 1992 to 2002.
3		
4		
5	A.	Please see attached revised page 3 of 3.

											Page 2 of 3
Newfoundland and Labrador Hydro Historical and Forecast System Energy Requirements (GWh) For 1992 to 2002											
			Island Int	terconne	cted Syst	em					
	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>	<u>1998</u>	<u>1999</u>	<u>2000</u>	<u>2001 F</u>	<u>2002 F</u>
Newfoundland Power	4243.0	4215.4	4200.8	4213.8	4186.6	4306.2	4157.3	4083.8	4263.2	4399.4	4454.8
Hydro Rural Interconnected ¹	300.9	300.5	299.1	286.2	308.8	359.2	361.3	370.5	388.8	398.1	388.9
Corner Brook Pulp and Paper	296.7	253.8	194.4	243.3	311.4	326.0	386.6	313.6	357.8	389.9	506.2
Deer Lake Power ²	18.1	56.0	17.2	16.5	18.2	19.2	19.5	16.8	18.5	16.9	17.1
Abitibi Consolidated - Grand Falls ³	154.6	161.5	164.6	178.3	209.3	163.2	90.8	135.4	145.0	177.3	177.3
Abitibi Consolidated - Stephenville	489.4	513.3	530.0	525.2	457.8	497.0	297.1	517.6	537.7	560.0	568.6
Nfld Proc. / North Atlantic Refining	180.4	207.6	108.7	194.6	228.8	244.8	193.7	224.8	219.7	233.6	233.6
Albright & Wilson Americas ⁴	7.0	6.7	6.2	2.0	2.6	2.5	-	-	-	-	-
Hope Brook Gold / Royal Oak ⁵	41.0	74.5	72.5	70.3	67.2	43.8	-	-	-	-	-
Hydro Auxiliaries ⁶	2.5	-	-	-	-	-	-	-	-	-	-
Hydro Sales & Bulk Deliveries ¹	5733.5	5789.2	5593.4	5730.2	5790.8	5961.9	5506.3	5662.6	5930.7	6175.3	6346.4
Transmission Losses	195.3	210.7	224.7	197.0	197.8	202.5	211.4	214.4	210.8	217.2	233.7
Hydro Island Requirement	5928.8	6000.0	5818.2	5927.2	5988.5	6164.4	5717.7	5876.9	6141.5	6392.5	6580.1

1. Hydro Rural data includes distribution losses and sub-transmission losses.

2. Can include Emergency.

3. Can include Emergency.

4. Ceased service in 1998.

5. Ceased service in 1997.

6. Included in Station Services as of 1993.

IC-79 Rev.2 2001 General Rate Application

REVISED July 27, 2001										Pag	je 3 of 3 Revised
Newfoundland and Labrador Hydro Historical System Non - Coincident Maximum Demand (MW) For 1992 to 2002 Island Interconnected System											
	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>	<u>1998</u>	<u>1999</u>	<u>2000</u>	<u>2001F</u>	<u>2002F</u>
Newfoundland Power	1032.7	971.0	1027.6	960.5	1034.7	985.0	997.4	963.1	957.2	1014.4	1026.8
Hydro Rural Interconnected ¹	70.7	68.6	69.0	67.8	75.9	81.2	80.2	84.8	82.9	90.9	89.6
Corner Brook Pulp and Paper	43.0	38.0	38.0	38.3	38.2	51.0	54.0	49.0	49.0	51.0	63.0
Deer Lake Power ²	40.7	46.5	43.2	42.8	40.4	26.5	36.0	23.9	24.4	2.0	2.0
Abitibi Consolidated - Grand Falls ³	55.8	62.3	63.9	68.8	69.8	66.7	52.9	44.1	45.9	26.0	26.0
Abitibi Consolidated - Stephenville	71.1	71.1	71.1	74.2	72.6	72.6	82.0	71.6	70.4	70.0	71.0
Nfld Proc. / North Atlantic Refining	28.0	29.1	27.6	29.0	31.0	30.8	31.3	30.3	30.3	30.0	30.0
Albright & Wilson Americas ⁴	1.4	1.6	1.5	0.6	0.6	0.6	-	-	-	-	-
Hope Brook Gold / Royal Oak ⁵	9.6	10.7	11.1	10.6	11.0	10.7	-	-	-	-	-
Hydro Auxiliaries ⁶	-	-	-	-	-	-	-	-	-	-	-
Hydro Sales & Bulk Deliveries ¹	-	-	-	-	-	-	-	-	-	1266.1	1291.0
Transmission Losses	-	-	-	-	-	-	-	-	-	50.6	53.2
Hydro Island Requirement	-	-	-	-	-	-	-	-	-	1316.7	1344.2

1. Hydro Rural data includes distribution losses and sub-transmission losses.

2. Can include Emergency. Peak is coincident with CBP&P.
 3. Can include Emergency.

Ceased service in 1998.
 Ceased service in 1997.

6. Included in Station Services as of 1993.

1	Q.	Provide the 2002 Forecast Cost of Service with the generation assets, the
2		associated terminal stations and the 138 kV & 66 kV transmission lines on
3		the Great Northern Peninsula assigned as specific to the Rural
4		Interconnected Customers.
5		
6	Α.	See attached. This Cost of Service Study has been revised from the original
7		response to incorporate the allocation of transmission losses on the Great
8		Northern Peninsula to Rural. On page 38, Schedule 3.1A, Hydro Rural
9		demand and energy have been increased. Changes resulting from the
10		revised Island Interconnected production demand and energy allocators can
11		be found on pages 39 and 40, as well as on all summary schedules where
12		Island Interconnected customer amounts are reported.

1	Q.	Provide the 2002 Forecast Cost of Service with the generation assets, the
2		associated terminal stations and the 138 kV & 66 kV transmission lines on
3		the Great Northern Peninsula assigned as specific to the Rural
4		Interconnected Customers.
5		
6	Α.	See attached. This second revision to the Cost of Service Study originally
7		requested in IC-87 now allocates the distribution substations in Roddickton
8		and St. Anthony to Rural, as referenced in IC-245.

1	Q.	Provide the 2002 Forecast Cost of Service assuming that the Island
2		Interconnected System load factor was 58.14%.
3		
4	Α.	See attached. It is important to note that the components of the system load
5		factor – Sales plus Losses and Coincident Peak – were not adjusted.
6		Adjustments to either of these would have consequences, within the Cost of
7		Service, beyond the calculation of system load factor; therefore it is not
8		possible to draw meaningful conclusions from the response to this question.

1	Q.	Provi	de the 2002 Forecast Cost of Service assuming that the three							
2		gene	generating sources referred to in Budgell's evidence page 10, lines 1 B 4 are							
3		in sei	rvice. Use the 2004 forecasted load for the Island Interconnected							
4		Syste	em.							
5										
6										
7	Α.	Attac	hed are revised pages of Hydro's Five-Year Plan. The revisions to the							
8		plan i	include:							
9										
10		•	The date on the Cover was updated to September 10, 2001.							
11										
12		•	The forth last bullet list item in the Executive Summary was revised to							
13			reflect the current revenue projection for 2001, i.e. \$335 million (\$337							
14			million in the prior Plan).							
15										
16		•	The Industrial rate after the RSP adjustment presented in Table 8 on							
17			page 14 was revised from 35.6 mills to 33.9 mills for 2001.							
18										
19		•	The Income Statement (page 16) for 2001 was revised to reflect the							
20			combined \$11.5 million RSP recovery (previously \$13.8 million) and							
21			the corresponding amortization of costs in the RSP.							
22										
23		•	The Statement of Cash Flows on page 17 was corrected for 2001 to							
24			show the combined effect of the plan balance net of the write-off							
25			(revised from \$65.6 million to \$63.3 million) and to show the revised							
26			projection for the Industrial collections (revised from \$6.1 million to							
27			\$3.8 million), the end result being no incremental increase or decrease							
28			in cash flows.							

1	Q.	Provide actual costs for the Island Interconnected system for each of the
2		years 1992 to 2000 inclusive plus the 2001 estimate. Use the same format as
3		in Schedule 1 of J.C. Roberts' evidence.
4		
5	Α.	Please refer to the attached table. This revised response incorporates the
6		suggestion from the Industrial Customers, in their Application Affecting
7		Information Requests, dated August 15, 2001, that prorations would be
8		acceptable. Island Interconnected Cost of Service numbers are available for
9		all items on the revenue requirement, with the exception of Lines 18-27 and
10		Lines 32-36. For these amounts, Hydro prorated the Island Interconnected
11		Operating & Maintenance costs, determined by the Cost of Service, over the
12		account group details in the same proportions as Hydro's total revenue
13		requirement. It is important to note that because these amounts have been
14		prorated, they are not supported by detailed financial records.
15		
16		Cost of Service studies for 1997, 2000, and 2001 are not yet available.

Q.	With regard to Brickhill's evidence page 7, lines 1 - 4, list all the changes in
	assignment on the Island Interconnected System and the cost impact that
	each change has on the three customer classes.
Α.	The changes in plant assignment and cost impacts are attached. The
	impacts for the reassignment of GNP Transmission assets (line 2) have been
	revised to incorporate the allocation of transmission losses on the GNP to
	Rural.

NEWFOUNDLAND AND LABRADOR HYDRO 2002 Forecast Cost of Service Proposed Changes in Plant Assignment - Cost Impacts (\$000)

	Before Deficit &	& Revenue C	redit Allocation	After Deficit & Revenue Credit Allocation			
	NP	Industrial	Rural Island Interconnected	NP	Industrial	Rural Island Interconnected	
Doyles / Bottom Brook re-assigned from NP to Common	(146)	94	52	(110)	94		
GNP Transmission assets re-assigned from Rural to Common	7,937	1,459	(9,099)	(10)	1,458		
Frequency Converters re-assigned from Common to Specific	(130)	141	(11)	(140)	141		
S'ville / Bottom Brook assets re-assigned from Common to NP	6	(4)	(2)	5	(4)		

Q. With respect to the diesel units at St. Anthony, Roddickton and Hawkes Bay,
what was the average annual revenue from energy generated by each of
these units in each of the years since they were interconnected?
A. The annual revenue for St. Anthony, Roddickton, and Hawkes Bay, was
determined by dividing the total Island Interconnected revenue by the total
Island Interconnected gross production. This number is then multiplied by

8 the gross production for each of the diesel units shown below.

Year	St. Anthony	Roddickton	Hawkes Bay
1996	\$45,328	\$7,799	\$25,860
1997	\$11,351	\$2,911	\$5,715
1998	\$18,377	\$5,692	\$5,389
1999	\$10,109	\$927	\$7,959
2000	\$6,320	\$0	\$2,320

1	Q.	What are the forecast cost implications for the Industrial Customers and					
2		Newfoundland Power of the change in assignment of the 138 KV and 66 KV					
3		transmission lines and associated termina	I station equipment connecting				
4		Hawkes Bay, St. Anthony and Roddickton	generation from Hydro Rural to				
5		Common?					
6							
7	Α.	The cost implications are as follows:					
8							
9		Newfoundland Power	\$10,000 decrease				
10		Island Industrial Customers	\$1,458,000 increase				
11							
12		These numbers have been revised from the	nose originally filed to incorporate				
13		the allocation of transmission losses on th	e Great Northern Peninsula to				
14		Rural.					
15							
16		A revised Cost of Service study is attached	d. On page 38, Schedule 3.1A,				
17		Hydro Rural demand and energy have bee	en increased. Changes resulting				
18		from the revised Island Interconnected production demand and energy					
19		allocators can be found on pages 39 and 4	40, as well as on all summary				
20		schedules where Island Interconnected cu	stomer amounts are reported.				

1	Q.	Q. K.C. McShane (paged 23-24) indicates two reasons for differences
2		regarding Hydro's capital structure as reported in 1999 and the forecast
3		capital structure for the test year 2002. Provide adjusted debt/equity and
4		interest coverages estimates for Hydro's regulated "utility only" operations for
5		each of the years 1992 to 2001 inclusive (indicating each of the components
6		required for the calculation) on a basis consistent with the assumptions
7		adopted for the 2002 test year but based on actual dividends (if any) paid in
8		each year.
9		
10		
11	A.	The attached schedule shows the calculation of Hydro's regulated "utility
12		only" debt/equity ratios which includes IOC.
13		
14		Please refer to the response to NP-2 for the applicable regulated interest
4 -		

15 coverage ratios.

1	Q.	Cost of Service Study (COSS) evidence - Exhibit JAB
2		
3		(1) Industrial revenues: Explain the basis for (a) the Industrial - Firm
4		revenue credit of \$40,326 in Schedule 1.2, line 4, column 4, and (b) the
5		Industrial - Non Firm Revenues of \$381,121 in Schedule 102, line 5, column
6		2. In each instance, indicate all billing determinants and rates assumed for
7		these estimates.
8		
9		(2) Industrial -Non Firm costs:
10		(a) Indicate any cost based rationale for the demand charge of \$1.50 per kW
11		proposed for non-firm sales to IC.
12		(b) Confirm that the COSS provides no analysis of any demand related costs
13		for non-firm sales, and that the costs assigned to this service in the COSS
14		are solely the firm energy cost of \$.02311 per kWh. (Schedule 1.3, page 1)
15		(c) Provide a table setting out the assumed COSS generation (MWh) by
16		source (hydraulic, No. 6 fuel, diesel fuel, gas turbine fuel, power purchases
17		from NUGs, power purchases from non-NUGs) and month for the test year
18		2002 for the Island Interconnected System. Indicate the likely percent of load
19		supplied by thermal during off-peak hours (low load evenings and weekend
20		hours) during each month.
21		(d) Indicate annual functionalized cost of service for each of the above
22		generation sources (in (c) above) and for transmission based on COSS for
23		the Island Interconnected System, showing separately for each generation
24		source and for transmission (where this is separate): fuel expenses, O&M,
25		depreciation, expense credits, disposal gain/loss, return on debt and return
26		on equity. Indicate classified generation and transmission costs (Production
27		Demand, Production and Transmission Energy, Transmission Demand)
28		separately for each fuel source and for transmission.

Page 2 of 12

1 (e) Compare in detail the COSS firm energy cost of \$.02311 per kWh and the 2 non-firm energy charge rate as proposed in Schedule A of the Application (page 3), assuming the average cost of fuel assumed for the COSS; indicate 3 4 how this charge could likely vary by month and time of day, based on the 5 assumptions adopted for COSS as to expected fuel use. Explain how in 6 practice it will be determined what fuel source is used to supply non-firm 7 energy. What will happen if this energy is supplied in whole or in part from non-thermal sources? 8

- 10 (3) Holyrood average capacity factor: Provide, on the same basis as 11 Schedule 4.3, the calculations to indicate the forecast net capacity factor for 12 Holyrood for the year 2002. Explain the factors affecting variances in this 13 capacity factor for the years 1997 through 2002. Assuming that the COSS for 14 2002 assumes No. 6 fuel consumption based on average hydraulic 15 generation availability and forecasts loads, why would it not be more 16 appropriate to use the net capacity factor consistent with these assumptions 17 rather than one based on the prior 5-year actual average?
- 18

9

- 19 (4) Loads used for COSS: Provide a table or the Island Interconnected 20 System test year 2002 setting out for each rate class the following 21 projections: billing demands at customer meter; coincident peak loads at 22 customer meter and at generator (after provision for losses); 2CP kW at 23 customer meter and at generator (after provision for losses); sales at 24 customer meter and generation energy requirements after losses; number of 25 customers for COSS allocation purposes. Explain all assumptions used to 26 derive these projections.
- 27
- (5) Load Factor classification generation costs: Review the rationale
 behind the Board's 1993 Report recommendation for splitting hydraulic plant

Page 3 of 12 1 costs for the Island Interconnected System between energy and demand 2 based on the system load factor. Indicate the change that this creates from 3 the previous COSS adopted by Hydro for the last rate hearing. Indicate the 4 rationale for also applying the load factor of each Isolated Diesel system 5 group in order to split diesel plant costs between energy and demand. 6 7 (6) Generation cost allocation: As reviewed in the evidence of J. A. 8 Brickhill (page 8), generation costs for the Island Interconnected System 9 have been allocated among rate classes based on a 2CP allocator. Provide 10 the loss of load hours (LOLH) study carried out by Hydro which supports use 11 of a 2CP allocator because it indicates a greater risk of loss of load hours 12 largely in two winter months. Provide the annual data supporting Schedule II 13 of J. A Brickhill's evidence for each year indicated in this schedule (1994, 14 1996, 1997, 1998, 1999, 2000); provide the same information for 1995 (if 15 available), projections for 2001, and the numbers supporting the projections 16 for 2002. Indicate any other tests that could reasonably be considered when 17 testing an allocation method in addition to the variation in results over time, 18 and assess the 2CP method in light of each such test. 19 20 (7) Changes to rural deficit allocation: L. A Brickhill indicates at page 14 21 that the method of allocating the rural deficit between customers has 22 changed to reflect the change in methodology from AED-based to CP-based. 23 Indicate the difference in COSS results due to this one change in 24 methodology, and the impact that this change has on allocation of the rural 25 deficit for the 2002 test year. 26 27 (8) Changes in RSP allocation: L. A Brickhill indicates at page 15 that the 28 RSP has historically been split between participating customer groups based 29 on Hydro's COSS. Indicate what changes, if any, the current COS

1		methodology makes with respect to such splits compa	ared to	Page 4 of 12 the COSS		
2		methodology used previously and provide an assessm	nent of	f the differences if		
3		any that result to the test year 2002 RSP allocation as provided for in				
4		schedule 1.2.1 of the COSS.				
5						
6	Α.	(1)(a) The Industrial - Firm revenue credit of \$40,326 i	in Sch	edule 1.2, line 4,		
7		column 4, (Exhibit JAB-1, page 4) was allocated to customer classes based				
8		on revenue requirement. The \$40,326 was therefore calculated as follows:				
9						
10		Industrial Firm Revenue Requirement				
11		Before Deficit and Revenue Credit	\$ 50,	005,883		
12		Divided by:				
13		Total Island Interconnected Revenue				
14		Revenue Requirement (Excluding Non-				
15		Firm Revenue Requirement)	\$27	7,812,814		
16		Equals		18%		
17		Multiplied By				
18		Total Island Interconnected Non-Firm				
19		Revenue Credit	\$	224,033		
20		Equals	\$	40,326		
21						
22		(1)(b) The Industrial - Non Firm Revenues of \$381,12	1 in So	chedule 1.2, line		
23		5, column 2 was calculated as shown on the attached	Page	11 of 12.		
24						
25		(2) Industrial -Non Firm costs:				
26		a) Please see response to NP-183.				
27						
28		b) The costs assigned to non-firm sales are as de	tailed	in the Island		
29		Interconnected schedule showing the allocation	n of fu	nctionalized		

1	Page 5 of 12 amounts to classes of service (Exhibit JAB-1, pages 39-40). The
2	\$157,088 is comprised of only energy cost allocations. The firm
3	energy cost of \$.02311 per kWh was derived from these allocated
4	costs, rather than providing the basis for determining the costs.
5	
6	c) The table below shows the assumed Cost of Service Generation by
7	source for the test year 2002 for the Island Interconnected System.
8	

Island Interconnected System Assumed Cost of Service Generation by Source (MWh)

Month	Hydraulic Plants	Holyrood (No.6 Fuel)			Power PurchaseNUGs	Other Power Purchase
January	410,410	304,890	30	1,070	11,600	0
February	368,120	275,390	30	240	9,320	0
March	426,860	228,670	30	220	9,920	0
April	353,830	196,700	30	220	11,120	0
May	331,890	152,450	30	220	13,810	0
June	329,580	98,350	30	220	13,320	0
July	408,050	0	30	220	13,000	0
August	401,530	0	30	220	12,820	0
September	273,460	147,530	30	220	12,360	0
October	290,850	203,260	30	220	13,240	0
November	314,300	245,880	30	220	12,870	0
December	362,790	304,760	30	900	12,520	0
Total	4,271,670	2,157,880	360	4,190	145,900	0

9

11

- 10 While thermal generation is required to complement production from
 - Hydro's hydraulic resources in order to meet the overall system load,
- 12 its output is varied to maintain system security and for water
- 13 management reasons.
- 14

4	Page 6 of 12
1	Normally, thermal generation is base loaded at an efficient output
2	level. Hydraulic generation is used to track the system load. Thermal
3	output may be reduced for system security or for system loading
4	reasons (ie. not enough load to share amongst required on-line
5	generation). As well, thermal output may be increased from its base
6	load to meet system peak requirements.
7	
8	Each week, System Operations sets the thermal base load
9	requirement to manage the water resource while respecting power
10	system security. The likely percent of loading supplied by thermal
11	generation during off peak hours varies as a result of the items
12	previously mentioned, however, the likely percent of system load
13	supplied by thermal generation in the off-peak hours is 2 to 5 percent
14	higher than the percent of system load supplied by thermal generation
15	in the on-peak hours.
16	
17	d) This analysis is not currently available, but work is in progress.
18	
19	e) The following table compares the industrial firm energy charge with
20	the industrial non-firm energy charge by month for 2002. It uses the
21	average cost of fuel used in the cost of service for each source.

Page 7 of 12

Month	Firm Energy Rate	Holyrood Non-Firm Energy Rate	Variance from Firm	Gas Turbine Non-Firm Energy Rate	Variance from Firm	Diesel Non-Firm Energy Rate	Variance from Firm
January	\$0.02311	\$0.04387	\$0.02076	\$0.10401	\$0.08090	\$0.10743	\$0.08432
February	\$0.02311	\$0.03914	\$0.01603	\$0.10278	\$0.07967	\$0.10743	\$0.08432
March	\$0.02311	\$0.03914	\$0.01603	\$0.10367	\$0.08056	\$0.10743	\$0.08432
April	\$0.02311	\$0.03745	\$0.01434	\$0.10360	\$0.08049	\$0.10743	\$0.08432
May	\$0.02311	\$0.03745	\$0.01434	\$0.10354	\$0.08043	\$0.10743	\$0.08432
June	\$0.02311	\$0.03686	\$0.01375	\$0.10524	\$0.08213	\$0.10743	\$0.08432
July	\$0.02311	\$0.03686	\$0.01375	\$0.10518	\$0.08207	\$0.10743	\$0.08432
August	\$0.02311	\$0.03686	\$0.01375	\$0.10514	\$0.08203	\$0.10743	\$0.08432
Septembe	er \$0.02311	\$0.03657	\$0.01346	\$0.10686	\$0.08375	\$0.10743	\$0.08432
October	\$0.02311	\$0.03639	\$0.01328	\$0.10686	\$0.08375	\$0.10743	\$0.08432
Novembe	r \$0.02311	\$0.03620	\$0.01309	\$0.10683	\$0.08372	\$0.10743	\$0.08432
Decembe	r \$0.02311	\$0.03613	\$0.01302	\$0.10814	\$0.08503	\$0.10743	\$0.08432

Comparison of Industrial Firm Rates and Non-Firm Energy Rates

1 The non-firm energy charge will be at the Holyrood non-firm rate for all 2 periods including the periods when no thermal source is operating, 3 except when either or both of the diesel plants and the gas turbine 4 plants are operated or their output must be increased to meet the non-5 firm load. Typically the diesel plants or gas turbine plants would be 6 required to meet non-firm energy requirements during peak load 7 periods or when there are transmission restrictions to the area of the 8 grid where the customer is located. Although the higher non-firm rates 9 could apply during any hour of the year due to transmission or 10 generation problems, the probability is higher in the winter period 11 (December to March) and during the peak hours of 0800 to 2000 12 hours each day.

14The decision to use a higher cost source is made by the power system15operator when he determines there is insufficient power or energy

13

1	Page 8 of 12 available from other sources, either hydroelectric or Holyrood to meet
2	the load demanded on the system, or there is insufficient transmission
2	capacity to an area where the non-firm load is being demanded.
4	capacity to an area where the non-ninh load is being demanded.
	(2) The Helvrood not conceity factor for the year 2002 based on the forecast
5	(3) The Holyrood net capacity factor for the year 2002 based on the forecast
6	energy production is as follows:
7	
8	2,157,880,000 = 52.86%
9	466,000 x 8,760
10	
11	The capacity factors from 1997 to 2000 are based on the thermal production
12	required in those years. Both hydraulic generation and system load affect
13	the Holyrood net production requirement. In all of these years the hydraulic
14	generation was above average resulting in reduced Holyrood requirements.
15	In addition, in 1998 and 1999 net production at Holyrood was reduced further
16	due to the lower load caused by extended labour disputes in the pulp and
17	paper industry. The capacity factors for 2001 and 2002 are based on
18	forecast net production at Holyrood, which is based on the load forecast for
19	those years with average hydraulic production.
20	
21	(4) The table requested is shown on the attached page 12 of 12.
22	
23	(5) At the last rate hearing, hydraulic plant costs for the Island Interconnected
24	System were split on a 50% demand/50% energy basis in the 1992 COS
25	Study.
26	
27	Diesel plants in the Isolated Systems are operated as base load plants
28	similar to the Holyrood Thermal plant. For this application, Hydro has
-0	entillar to the recipional mentilar plant. For this application, righte flas

IC-202 Revised 2001 General Rate Application

Page 9 of 12 1 proposed using the system load factor for the Labrador and Island Isolated 2 Systems as a proxy for capacity factor as used for Holyrood for consistency. 3 4 (6) See response to NP-135 for copy of 2CP allocator report. See response 5 to IC-137 regarding data supporting Schedule II of J.A. Brickhill. Other tests 6 which could be reasonably considered are Bonbright's fair-cost-7 apportionment objective and the consumer rationing objective. The 2CP 8 method meets both. It fairly distributes the generation demand requirement 9 among the Island Interconnected System customers as it reflects cost 10 causality. It promotes the use of economically justified service because it 11 allocates costs to those who cause the incurrence of the costs. 12 13 (7) The 1992 test year Cost of Service (COS) methodology used Average 14 and Excess Demand (AED) kW to allocate production and transmission 15 demand costs to rate classes. The proposed methodology uses Coincident 16 Peak (CP) to perform these allocations. The Cost of Service, revised to 17 reflect the AED methodology, is attached. 18 19 (8) The 1992 test year Cost of Service (COS) methodology used Average 20 and Excess Demand (AED) kW to allocate production and transmission 21 demand costs to rate classes. The proposed methodology uses Coincident 22 Peak (CP) to perform these allocations. This change in methodology 23 impacts the RSP customer splits, as revised actual energy amounts, using 24 AED methodology, also affected demand costs, and revised demands were 25 therefore also required for the RSP split between customer groups. 26 Schedule 1.2.1 (exhibit JAB-1, pages 9-10) is impacted in that CP kW are 27 also used to determine the unit costs of the deficit. It is important to note that 28 cost allocation also would change if AED were used. This analysis does not

	2001 General	IC-202 Revised Rate Application
		Page 10 of 12
The effects of allocation	ating the rural d	eficit (Schedule
2002 forecast annu	al RSP activity	are:
Proposed	Revised	Difference \$(5,338)
	2002 forecast annu	The effects of allocating the rural d 2002 forecast annual RSP activity Proposed Revised

5	Newfoundland Power	\$19,380,610	\$19,375,272	\$(5,338)
6	Island Industrial	5,909,874	5,909,874	-
7	Labrador interconnected	199,739	205,077	5,338
8		<u>\$25,490,223</u>	<u>\$25,490,223</u>	-

			Page 4 of 5
1		(f) Please refer to the response to 1(c) above.	r ugo 4 or o
2			
3		(g) Please refer to the response to 1(c) above.	
4			
5	1.	Please refer to the response IC-203 1(c) above.	
6			
7	2.	Please refer to the response to IC-180.	
8			
9	3.	Please refer to the response to IC-87.	
10			
11	4.	See attached Interconnection Studies as requested.	
12			
13	6.	See IC-203(6) Revised.	

1	Q.	Impacts re: Interconnections of Isolated Rural Systems to Island
2		Interconnected System
3		
4		6. In 1995, the Board recommended "that the prudence of costs associated
5		with the St. Anthony/Roddickton interconnection be reviewed at the next
6		Hydro rate referral, following the interconnection, for the purpose of
7		determining recoverable costs." Provide all evidence available to Hydro
8		as to why this interconnection was undertaken, and that the costs were
9		prudently incurred and in the best interest of customers on the Island
10		Interconnected System.
11		
12		
13	Α.	6. The report entitled "Great Northern Peninsula Interconnection Study"
14		dated October 18, 1993 (attached to IC-203(5)) reviewed several
15		interconnection alternatives. The report determined that while technically
16		viable, the interconnection did not meet the minimum economic guideline
17		applied by Hydro Management when approving interconnection projects.
18		
19		However, early in 1994 the Canada/Newfoundland Infrastructure Initiative
20		was announced and Hydro applied for and was granted \$5.0 million to be
21		applied toward the interconnection of St. Anthony/Roddickton system.
22		Analysis indicated that this funding improved the economics of the
23		proposed interconnection and a decision was made to proceed.
24		
25		The interconnection scheme approved was very similar to interconnection
26		alternative #4 – 138 kV Bear Cove to St. Anthony Airport as outlined in
27		the October 18, 1993 report, with the following changes:

	Page 2 of 6
1	The in-service date had been moved from 1998 to 1996 in order to take
2	advantage of funding under the Infrastructure Agreement;
3	
4	 The Hawke's Bay diesels were to be relocated to the Roddickton
5	Woodchip Plant;
6	The Roddickton woodchip fired thermal generating station was to be
7	modified to burn #2 fuel oil and placed on standby; and
8	 Switched shunt reactors and capacitors were to be used for voltage
9	control instead of static var compensators.
10	
11	Subsequent to project approval, the following changes were made to the
12	interconnection concept:
13	
14	 It was decided to leave the diesel units at Hawke's Bay and not
15	relocate them to Roddickton; and
16	 It was decided not to convert the Roddickton Woodchip Plant to an oil
17	fired operation.
18	
19	The interconnection alternative approved had an estimated capital cost of
20	\$38.4 million or a net cost of \$33.4 million including the \$5.0 million
21	Infrastructure grant. A cost effectiveness analysis, which incorporated the
22	Infrastructure grant as well as revised load forecasts, was completed. The
23	revised load forecasts, fuel series and Holyrood incremental energy rates
24	are shown in Schedule 1-3 respectively. The following table summarizes
25	the results of the analysis and copies of the complete cost effectiveness
26	analysis are attached.

IC-203(6) Revised 2001 General Rate Application Page 3 of 6

SUMM	ARY OF COST EF (1993\$ X		IS
Cumulative Present	Worth to 2022	Present Worth	Payback Period
Isolated Alternative	Interconnected Alternative	Difference at 2011	Years
88001	73769	-4020	12

1 Given that the payback period is less than Hydro's minimum economic

2 guideline that interconnection projects must have payback periods not

3 exceeding 15 years, the decision was made to proceed with the project. The

4 project, when completed, cost approximately \$31.4 million and with the \$5.0

5 million infrastructure grant resulted in a net cost of \$26.4 million.

Page 4 of 6

SCHEDULE 1 GNP INTERCONNECTION ANALYSIS LOAD FORECASTS

REVISED MAY 1994

	St. Ar	thony/Rodo	dickton Sys	stem		
Year	Isolated	Forecast	Interco	nnected	Existing GN	IP System
			Fore	cast	Fored	cast
	(kW)	(MWh)	(kW)	(MWh)	(kW)	(MWh)
1994	11263	51412	-	-	26791	112545
1995	11539	51922	-	-	27999	117812
1996	11640	52360	-	-	28586	120272
1997	11742	52808	11348	49209	29149	122624
1998	11845	53257	12676	54687	29696	124920
1999	11941	53673	13535	58097	30249	127234
2000	12037	54090	14064	60370	30740	129295
2001	12140	56222	14596	63930	31208	131260
2002	12257	56751	15050	65920	31689	133279
2003	12371	57267	15399	67447	32159	135255
2004	12517	57926	15705	68786	32605	137131
2005	12665	58591	16016	70152	32986	138735
2006	12832	59348	16285	71328	33365	140342
2007	13002	60112	16555	72513	33705	141780
2008	13163	60838	16790	73540	34008	143055
2009	13295	61432	17002	74471	34339	144452
2010	13438	62078	17225	75446	34682	145898
2011	13590	62767	17457	76460	35004	147259
2012	13739	63436	17678	77430	35296	148496
2013	13871	64033	17877	78299	35581	149696
2014	13971	64484	18058	79092	35866	150901
2015	14082	64984	18244	79908	36132	152021
2016	14203	65532	18436	80751	36398	153138
2017	14309	66010	18604	81483	36673	154300
2018	14400	66419	18747	82111	36938	155418
2019	14497	66855	18901	82784	37177	156423
2020	14603	67334	19059	83480	37404	157378
2021	14697	67760	19200	84096	37642	158384
2022	14777	68119	19319	84617	37882	159394

Note: Existing GNP system forecasts include existing loads from Bonne Bay to the Flower's Cove area.

Page 5 of 6

SCHEDULE 2 GNP INTERCONNECTION ANALYSIS FUEL SERIES

REVISED APRIL 1994

Maar	Residual Fuel	Diesel Fuel	Wood Fuel
Year	\$/BBL	\$/L	\$/Tonne
1993	15.4	0.198	29.21
1994	13.8	0.190	29.21
1995	14.0	0.201	29.21
1996	15.2	0.216	29.21
1997	16.4	0.232	32.11
1998	17.6	0.247	32.11
1999	18.9	0.262	32.11
2000	20.2	0.278	32.11
2001	21.8	0.298	36.12
2002	22.5	0.304	36.12
2003	23.1	0.308	36.12
2004	23.9	0.315	36.12
2005	24.3	0.322	40.36
2006	24.8	0.328	40.36
2007	25.3	0.335	40.36
2008	25.8	0.342	40.36
2009	26.3	0.348	45.04
2010	26.9	0.355	45.04
2011	27.4	0.363	45.04
2012	28.2	0.369	45.04
2013	29.8	0.376	49.58
2014	30.6	0.384	49.58
2015	31.6	0.392	49.58
2016	32.5	0.400	49.58
2017	33.5	0.408	54.55
2018	34.4	0.416	54.55
2019	35.3	0.423	54.55
2020	36.3	0.432	54.55
2021	37.2	0.440	60.01
2022	38.2	0.449	60.01

Page 6 of 6

SCHEDULE 3 GNP INTERCONNECTION ANALYSIS HOLYROOD INCREMENTAL ENERGY RATES

REVISED APRIL 1994

Year	Energy Rate \$/kWh
1997	0.0271
1997	0.0291
1998	0.0291
2000 2001	0.0334 0.0360
2002	0.0372
2003	0.0382
2004	0.0395
2005	0.0402
2006	0.0410
2007	0.0418
2008	0.0426
2009	0.0435
2010	0.0445
2011	0.0453
2012	0.0466
2013	0.0493
2014	0.0506
2015	0.0522
2016	0.0537
2017	0.0554
2018	0.0569
2019	0.0583
2020	0.0600
2021	0.0615
2022	0.0631

Note: Assumes a Holyrood efficiency of 605 kWh/Barrel

1	Q.	NUG	cost benefits for ratepayers:
2			
3		(1)	Indicate the overall cost benefits to ratepayers (through reduced
4			revenue requirements in 2002 and subsequent years) provided by
5			each of the NUGs implemented since 1992.
6		(2)	Indicate the forecast kWh for 2002, and actual numbers for each year
7			to date of operation, of the generation for each NUG during the winter
8			months (January to March and November and December) and the
9			other months (April to October).
10		(3)	Compare mill/kWh costs for each NUG (as set out in Schedule IX to
11			R. J. Henderson's evidence) to costs forecast for existing thermal
12			facilities and for other new generation options available to Hydro.
13		(4)	Explain the basis for setting NUG charges higher in 5 winter months
14			relative to the other months, and indicate the extent to which these
15			differences reflect Hydro's variability in seasonal time-of-use costs.
16			
17	Α.	(1)	On a go-forward basis, the overall forecast cost benefit to ratepayers
18			provided by Algonquin Power and the Star Lake Partnership for the
19			period from 2002 to 2006 is shown below. The expansion plan
20			beyond 2006 has not been finalized. The total forecast benefit is
21			comprised of an energy component and a capacity component. The
22			energy component is based on avoided thermal energy production
23			including fuel and variable O&M, as produced by Hydro's generation
24			planning model. The capacity component is based on the capital cost
25			of a similar amount of simple cycle gas turbine capacity which is
26			Hydro's least costly capacity alternative. In addition to these direct
27			benefits, other benefits such as reduced emissions from Hydro's
28			thermal plants are also derived from the NUGS contracts.

IC 208 Revised 2001 General Rate Application

Page 2 of 4

		(mills/kWh)			
		Algonquin Power		Star Lake Hydro	
	Avoided	Project	Project		
Year	Costs	Costs	Variance	Costs	Variance
2002	73.5	70.6	2.9	67.9	5.5
2003	64.6	71.2	-6.5	68.5	-3.8
2004	59.0	71.9	-12.9	69.1	-10.1
2005	59.9	72.7	-12.8	69.9	-10.0
2006	63.0	73.5	-10.5	70.6	-7.6

(2) Please refer to table below:

Newfoundland & Labrador Hydro NUGS Power Purchases

Star Lake Hydro Partnership

	-	•	
	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	3,036,448	23,590,499
1999	35,357,979	79,806,714	23,623,995
2000	36,942,083	81,419,129	24,689,199
Forecast			
2001	29,181,000	76,691,000	22,129,000
2002	29,181,000	76,691,000	22,129,000

Algonquin Power (Rattle Brook) Partnership

	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	112,056	2,502,760
1999	3,796,698	10,449,273	3,130,405
2000	2,997,733	11,431,296	3,397,398
Forecast			
2001	1,650,000	12,980,000	3,270,000
2002	1,650,000	12,980,000	3,270,000

IC 208 Revised 2001 General Rate Application Page 3 of 4

1	(3)	The comparison of m	ill/kWh costs fo	r each NUG t	o forecast costs for
2		existing thermal facilit	ties and Granite	e Canal is sho	wn below. For
3		reasons of commercia	al confidentiality	/, Hydro cann	ot provide similar
4		information for other I			
5					
6				Mills/kWh	
7		_	2001	2002	2004
8	Algon	quin Power	69.8	70.6	
9	Star L	ake Partnership	67.3	67.9	
10	Existi	ng Holyrood ⁽¹⁾	52.9	51.0	
11	Existi	ng Gas Turbine ⁽¹⁾	115.6	112.0	
12	Existi	ng Diesel ⁽¹⁾	103.4	100.3	
13	Grani	te Canal ⁽²⁾			54.2
14					
15	⁽¹⁾ C	osts for existing therma	al plant reflect fu	uel and variab	le O&M costs
16	⁽²⁾ Co	ost for Granite Canal re	eflects the leveli	zed capital re	covery and O&M
17	со	sts for the first full year	r of operation.		
18					
19	(4)	In the 1992 RFP for r	non-utility gener	ration from sn	nall scale hydro
20		projects, Hydro set a	maximum price	schedule for	proposals whereby
21		proponents could elec	ct to submit tho	se prices or a	n alternative lower
22		schedule of prices.			
23					
24		Only the demand con	nponent of the p	pricing structu	re varied between
25		winter and summer. T	The energy port	ion was held	constant for the
26		year. The basis for se	etting the demar	nd componen	t of the price higher
27		for the winter months	was the Septer	mber 1984 stu	udy of Marginal Time
28		of Use (TOU) Costs.	That study indic	ated that the	seasonality of load

	Page 4 of 4
1	affected costs whereby the ratio of winter costs to summer costs was
2	1.5.
3	
4	To factor seasonal TOU into avoided costs, the Loss of Load
5	Expectation (LOLE) index was used to allocate the capacity
6	component of costs throughout the year. This resulted in a distribution
7	of capacity costs of 60% during November to March and 40% for the
8	remaining months.